LEADER 03646nam 22006255 450 001 9910380734303321 005 20200703213210.0 010 $a981-15-0508-X 024 7 $a10.1007/978-981-15-0508-9 035 $a(CKB)4100000010328269 035 $a(DE-He213)978-981-15-0508-9 035 $a(MiAaPQ)EBC6109954 035 $a(PPN)242977715 035 $a(EXLCZ)994100000010328269 100 $a20200215d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAFM-Based Observation and Robotic Nano-manipulation /$fby Shuai Yuan, Lianqing Liu, Zhidong Wang, Ning Xi 205 $a1st ed. 2020. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2020. 215 $a1 online resource (XII, 184 p. 135 illus., 104 illus. in color.) 311 $a981-15-0507-1 327 $aIntroduction -- Robotics based AFM Nano-manipulation -- AFM Image Reconstruction using Thermal-drift Compensation Model -- Tip Model based AFM Image Reconstruction -- Stochastic Approach based Tip Localization -- Path Planning of Nano-robot using Probability Distribution Region -- Nano-manipulation Platform based on AFM. 330 $aThis book highlights the latest advances in AFM nano-manipulation research in the field of nanotechnology. There are numerous uncertainties in the AFM nano-manipulation environment, such as thermal drift, tip broadening effect, tip positioning errors and manipulation instability. This book proposes a method for estimating tip morphology using a blind modeling algorithm, which is the basis of the analysis of the influence of thermal drift on AFM scanning images, and also explains how the scanning image of AFM is reconstructed with better accuracy. Further, the book describes how the tip positioning errors caused by thermal drift and system nonlinearity can be corrected using the proposed landmark observation method, and also explores the tip path planning method in a complex environment. Lastly, it presents an AFM-based nano-manipulation platform to illustrate the effectiveness of the proposed method using theoretical research, such as tip positioning and virtual nano-hand. 606 $aMaterials science 606 $aNanotechnology 606 $aNanoscience 606 $aNanoscience 606 $aNanostructures 606 $aCharacterization and Evaluation of Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z17000 606 $aNanotechnology and Microengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T18000 606 $aNanoscale Science and Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/P25140 615 0$aMaterials science. 615 0$aNanotechnology. 615 0$aNanoscience. 615 0$aNanoscience. 615 0$aNanostructures. 615 14$aCharacterization and Evaluation of Materials. 615 24$aNanotechnology and Microengineering. 615 24$aNanoscale Science and Technology. 676 $a620.5 700 $aYuan$b Shuai$4aut$4http://id.loc.gov/vocabulary/relators/aut$01062291 702 $aLiu$b Lianqing$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWang$b Zhidong$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aXi$b Ning$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910380734303321 996 $aAFM-Based Observation and Robotic Nano-manipulation$92524189 997 $aUNINA