LEADER 05187nam 2200505 450 001 9910677188103321 005 20230107105632.0 010 $a1-119-85801-1 010 $a1-119-85800-3 035 $a(MiAaPQ)EBC7069551 035 $a(Au-PeEL)EBL7069551 035 $a(CKB)24342160500041 035 $a(PPN)264444957 035 $a(OCoLC)1338980716 035 $a(EXLCZ)9924342160500041 100 $a20230107d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aData science handbook $ea practical approach /$fKolla Bhanu Prakash 210 1$aHoboken, New Jersey ;$aBeverly, Massachusetts :$cWiley :$cScrivener Publishing,$d[2022] 210 4$dİ2022 215 $a1 online resource (472 pages) 225 0 $aNext-generation computing and communication engineering series 311 08$aPrint version: Prakash, Kolla Bhanu Data Science Handbook Newark : John Wiley & Sons, Incorporated,c2022 9781119857334 320 $aIncludes bibliographical references. 327 $aCover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Acknowledgment -- Preface -- 1 Data Munging Basics -- 1 Introduction -- 1.1 Filtering and Selecting Data -- 1.2 Treating Missing Values -- 1.3 Removing Duplicatesduplicates -- 1.4 Concatenating and Transforming Data -- 1.5 Grouping and Data Aggregation -- References -- 2 Data Visualization -- 2.1 Creating Standard Plots (Line, Bar, Pie) -- 2.2 Defining Elements of a Plot -- 2.3 Plot Formatting Segment 3 Plot formatting -- 2.4 Creating Labels and Annotations -- 2.5 Creating Visualizations from Time Series Data -- 2.6 Constructing Histograms, Box Plots, and Scatter Plots -- References -- 3 Basic Math and Statistics -- 3.1 Linear Algebra -- 3.2 Calculus -- 3.2.1 Differential Calculus -- 3.2.2 Integral Calculus -- Statistics for Data Science -- 3.3 Inferential Statistics -- 3.3.1 Central Limit Theorem -- 3.3.2 Hypothesis Testing -- 3.3.3 ANOVA -- 3.3.4 Qualitative Data Analysis -- 3.4 Using NumPy to Perform Arithmetic Operations on Data -- 3.5 Generating Summary Statistics Using Pandas and Scipy -- 3.6 Summarizing Categorical Data Using Pandas -- 3.7 Starting with Parametric Methods in Pandas and Scipy -- 3.8 Delving Into Non-Parametric Methods Using Pandas and Scipy -- 3.9 Transforming Dataset Distributions -- References -- 4 Introduction to Machine Learning -- 4.1 Introduction to Machine Learning -- 4.2 Types of Machine Learning Algorithms -- 4.3 Explanatory Factor Analysis -- 4.4 Principal Component Analysis (PCA) -- References -- 5 Outlier Analysis -- 5.1 Extreme Value Analysis Using Univariate Methods -- 5.2 Multivariate Analysis for Outlier Detection -- 5.3 DBSCan Clustering to Identify Outliers -- References -- 6 Cluster Analysis -- 6.1 K-Means Algorithm -- 6.2 Hierarchial Methods -- 6.3 Instance-Based Learning w/k-Nearest Neighbor. 327 $aReferences -- 7 Network Analysis with NetworkX -- 7.1 Working with Graph Objects -- 7.2 Simulating a Social Network (ie -- Directed Network Analysis) -- 7.3 Analyzing a Social Network -- References -- 8 Basic Algorithmic Learning -- 8.1 Linear Regression -- 8.2 Logistic Regression -- 8.3 Naive Bayes Classifiers -- References -- 9 Web-Based Data Visualizations with Plotly -- 9.1 Collaborative Analytics -- 9.2 Basic Charts -- 9.3 Statistical Charts -- 9.4 Plotly Maps -- References -- 10 Web Scraping with Beautiful Soup -- 10.1 The BeautifulSoup Object -- 10.2 Exploring NavigableString Objects -- 10.3 Data Parsing -- 10.4 Web Scraping -- 10.5 Ensemble Models with Random Forests -- References -- 11 Covid19 Detection and Prediction -- Bibliography -- 12 Leaf Disease Detection -- Bibliography -- 13 Brain Tumor Detection with Data Science -- Bibliography -- 14 Color Detection with Python -- Bibliography -- 15 Detecting Parkinson's Disease -- Bibliography -- 16 Sentiment Analysis -- Bibliography -- 17 Road Lane Line Detection -- Bibliography -- 18 Fake News Detection -- Bibliography -- 19 Speech Emotion Recognition -- Bibliography -- 20 Gender and Age Detection with Data Science -- Bibliography -- 21 Diabetic Retinopathy -- Bibliography -- 22 Driver Drowsiness Detection in Python -- Bibliography -- 23 Chatbot Using Python -- Bibliography -- 24 Handwritten Digit Recognition Project -- Bibliography -- 25 Image Caption Generator Project in Python -- Bibliography -- 26 Credit Card Fraud Detection Project -- Bibliography -- 27 Movie Recommendation System -- Bibliography -- 28 Customer Segmentation -- Bibliography -- 29 Breast Cancer Classification -- Bibliography -- 30 Traffic Signs Recognition -- Bibliography -- EULA. 606 $aBig data$vHandbooks, manuals, etc 606 $aData mining 606 $aInformation visualization 615 0$aBig data 615 0$aData mining. 615 0$aInformation visualization. 676 $a005.7 700 $aPrakash$b Kolla Bhanu$01344384 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910677188103321 996 $aData science handbook$93069313 997 $aUNINA LEADER 02446nam 2200577zu 450 001 9910376373703321 005 20210807005217.0 010 $a1-4503-2647-1 035 $a(CKB)3780000000084938 035 $a(SSID)ssj0001341734 035 $a(PQKBManifestationID)11750269 035 $a(PQKBTitleCode)TC0001341734 035 $a(PQKBWorkID)11277184 035 $a(PQKB)10112450 035 $a(WaSeSS)IndRDA00027615 035 $a(Association for Computing Machinery)10.1145/2600918 035 $a(EXLCZ)993780000000084938 100 $a20160829d2014 uy 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aIH&MMSec '14 : proceedings of the 2014 ACM Information Hiding and Multimedia Security Workshop :June 11-13, 2014, Salzburg, Austria 210 31$a[Place of publication not identified]$cACM$d2014 215 $a1 online resource (200 pages) 225 1 $aACM Conferences 300 $aBibliographic Level Mode of Issuance: Monograph 410 0$aACM Conferences 517 1 $aInformation Hiding and Multimedia Security '14 :$eproceedings of the 2014 Association for Computing Machinery Information Hiding and Multimedia Security Workshop :June 11-13, 2014, Salzburg, Austria 517 1 $aProceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security 517 1 $aProceedings of the 2nd Association for Computing Machinery Workshop on Information Hiding and Multimedia Security 517 1 $aIH&MMSec '14 517 1 $aACM Information Hiding and Multimedia Security Workshop, Salzburg, Austria - June 11 - 13, 2014 606 $aComputer security$xComputer programs$vCongresses 606 $aMultimedia systems$vCongresses 606 $aEngineering & Applied Sciences$2HILCC 606 $aComputer Science$2HILCC 608 $aConference papers and proceedings.$2fast 615 0$aComputer security$xComputer programs 615 0$aMultimedia systems 615 7$aEngineering & Applied Sciences 615 7$aComputer Science 700 $aUhl$b Andreas$0969128 712 02$aACM Special Interest Group on Multimedia 712 02$aAssociation for Computing Machinery 801 0$bPQKB 906 $aBOOK 912 $a9910376373703321 996 $aIH&MMSec '14 : proceedings of the 2014 ACM Information Hiding and Multimedia Security Workshop :June 11-13, 2014, Salzburg, Austria$92201748 997 $aUNINA