LEADER 03428nam 22005775 450 001 9910373934903321 005 20200703010153.0 010 $a94-024-1760-5 024 7 $a10.1007/978-94-024-1760-9 035 $a(CKB)4100000009759162 035 $a(DE-He213)978-94-024-1760-9 035 $a(MiAaPQ)EBC5974899 035 $a(PPN)242822096 035 $a(EXLCZ)994100000009759162 100 $a20191106d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Physics $eStates, Observables and Their Time Evolution /$fby Arno Bohm, Piotr Kielanowski, G. Bruce Mainland 205 $a1st ed. 2019. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d2019. 215 $a1 online resource (IX, 353 p. 48 illus.) 300 $aIncludes index. 311 $a94-024-1758-3 327 $aQuantum Harmonic Oscillator -- Angular Momentum -- Combinations of Quantum Physical Systems -- Stationary Perturbation Theory -- Time Evolution of Quantum Systems -- Epilogue -- Appendix: Mathematical Preliminaries -- Index. 330 $aThis is an introductory graduate course on quantum mechanics, which is presented in its general form by stressing the operator approach. Representations of the algebra of the harmonic oscillator and of the algebra of angular momentum are determined in chapters 1 and 2 respectively. The algebra of angular momentum is enlarged by adding the position operator so that the algebra can be used to describe rigid and non-rigid rotating molecules. The combination of quantum physical systems using direct-product spaces is discussed in chapter 3. The theory is used to describe a vibrating rotator, and the theoretical predictions are then compared with data for a vibrating and rotating diatomic molecule. The formalism of first- and second-order non-degenerate perturbation theory and first-order degenerate perturbation theory are derived in chapter 4. Time development is described in chapter 5 using either the Schroedinger equation of motion or the Heisenberg?s one. An elementary mathematical tutorial forms a useful appendix for the readers who don?t have prior knowledge of the general mathematical structure of quantum mechanics. 606 $aQuantum physics 606 $aPhysics 606 $aAtoms 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aAtomic, Molecular, Optical and Plasma Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24009 615 0$aQuantum physics. 615 0$aPhysics. 615 0$aAtoms. 615 14$aQuantum Physics. 615 24$aMathematical Methods in Physics. 615 24$aAtomic, Molecular, Optical and Plasma Physics. 676 $a530.12 700 $aBohm$b Arno$4aut$4http://id.loc.gov/vocabulary/relators/aut$040451 702 $aKielanowski$b Piotr$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMainland$b G. Bruce$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910373934903321 996 $aQuantum Physics$92530734 997 $aUNINA