LEADER 03985nam 22006495 450 001 9910373880003321 005 20200702010200.0 010 $a3-030-37375-4 024 7 $a10.1007/978-3-030-37375-7 035 $a(CKB)4940000000158710 035 $a(DE-He213)978-3-030-37375-7 035 $a(MiAaPQ)EBC6005440 035 $a(PPN)24284894X 035 $a(EXLCZ)994940000000158710 100 $a20200102d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSatellite Remote Sensing in Hydrological Data Assimilation /$fby Mehdi Khaki 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XV, 290 p. 101 illus., 88 illus. in color.) 311 $a3-030-37374-6 327 $aPart 1: Hydrological Data Assimilation -- Chapter 1 - Introduction -- Chapter 2 - Data assimilation and remote sensing data -- Part 2: Model-Data -- Chapter 3 - Hydrologic model -- Chapter 4 - Remote sensing for assimilation -- Part 3 : Data Assimilation Filters -- Chapter 5 - Sequential Data Assimilation Techniques for Data Assimilation -- Part 4 : GRACE Data Assimilation -- Chapter 6 - Ef?cient Assimilation of GRACE TWS into Hydrological Models -- Part 5 : Water Budget Constraint -- Chapter 7 - Constrained Data Assimilation Filtering -- Chapter 8 - Unsupervised Constraint for Hydrologic Data Assimilation -- Part 6 : Data-driven Approach -- Chapter 9 - Non-parametric Hydrologic Data Assimilation -- Chapter 10 - Parametric and Non-parametric Data Assimilation Frameworks -- Part 7 Hydrologic Applications -- Chapter 11- Groundwater Depletion over Iran -- Chapter 12 - Water Storage Variations over Bangladesh -- Chapter 13 - Multi-mission Satellite Data Assimilation over South America. . 330 $aThis book presents the fundamentals of data assimilation and reviews the application of satellite remote sensing in hydrological data assimilation. Although hydrological models are valuable tools to monitor and understand global and regional water cycles, they are subject to various sources of errors. Satellite remote sensing data provides a great opportunity to improve the performance of models through data assimilation. 606 $aPhysical geography 606 $aHydrology 606 $aRemote sensing 606 $aComputer science$xMathematics 606 $aStatistics 606 $aEarth System Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/G35000 606 $aHydrology/Water Resources$3https://scigraph.springernature.com/ontologies/product-market-codes/211000 606 $aRemote Sensing/Photogrammetry$3https://scigraph.springernature.com/ontologies/product-market-codes/J13010 606 $aComputational Mathematics and Numerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 606 $aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17020 615 0$aPhysical geography. 615 0$aHydrology. 615 0$aRemote sensing. 615 0$aComputer science$xMathematics. 615 0$aStatistics. 615 14$aEarth System Sciences. 615 24$aHydrology/Water Resources. 615 24$aRemote Sensing/Photogrammetry. 615 24$aComputational Mathematics and Numerical Analysis. 615 24$aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 676 $a551.48011 676 $a551.48011 700 $aKhaki$b Mehdi$4aut$4http://id.loc.gov/vocabulary/relators/aut$0855601 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910373880003321 996 $aSatellite Remote Sensing in Hydrological Data Assimilation$91910234 997 $aUNINA