LEADER 03359nam 2200877z- 450 001 9910372786803321 005 20210211 010 $a3-03928-001-5 035 $a(CKB)4100000010163758 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/48494 035 $a(oapen)doab48494 035 $a(EXLCZ)994100000010163758 100 $a20202102d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGeometry of Submanifolds and Homogeneous Spaces 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (128 p.) 311 08$a3-03928-000-7 330 $aThe present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered. 610 $a??-space 610 $a*-Ricci tensor 610 $a*-Weyl curvature tensor 610 $a3-Sasakian manifold 610 $aClifford torus 610 $acompact Riemannian manifolds 610 $acost functional 610 $aD'Atri space 610 $aEinstein manifold 610 $aevolution dynamics 610 $afinite-type 610 $aformality 610 $ageneralized convexity 610 $ageodesic chord property 610 $ageodesic symmetries 610 $ahadamard manifolds 610 $ahomogeneous Finsler space 610 $ahomogeneous geodesic 610 $ahomogeneous manifold 610 $ahomogeneous space 610 $ahyperbolic space 610 $ahypersphere 610 $ainequalities 610 $aisoparametric hypersurface 610 $aisospectral manifolds 610 $ak-D'Atri space 610 $aKa?hler 2 610 $aLaplace operator 610 $aLegendre curves 610 $alinks 610 $amagnetic curves 610 $amaximum principle 610 $amean curvature 610 $anon-flat complex space forms 610 $aoptimal control 610 $aorbifolds 610 $apointwise 1-type spherical Gauss map 610 $apointwise bi-slant immersions 610 $areal hypersurfaces 610 $aSasaki-Einstein 610 $aSasakian Lorentzian manifold 610 $aslant curves 610 $aspherical Gauss map 610 $asubmanifold integral 610 $avector equilibrium problem 610 $awarped products 610 $aweakly efficient pareto points 700 $aKaimakamis$b George$4auth$01293623 702 $aArvanitogeo?rgos$b Andreas$f1963-$4auth 906 $aBOOK 912 $a9910372786803321 996 $aGeometry of Submanifolds and Homogeneous Spaces$93022673 997 $aUNINA