LEADER 04885nam 2201465z- 450 001 9910367755303321 005 20231214133605.0 010 $a3-03921-515-9 035 $a(CKB)4100000010106164 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/56239 035 $a(EXLCZ)994100000010106164 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPhysiological Responses to Abiotic and Biotic Stress in Forest Trees 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 electronic resource (294 p.) 311 $a3-03921-514-0 330 $aAs sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level. 610 $apure stands 610 $aion relation 610 $aHeterobasidion annosum 610 $asalicylic acid 610 $aantioxidant enzymes 610 $aantioxidant activity 610 $aLuquasorb 610 $aintrinsic water-use efficiency 610 $aGreece 610 $aPinus koraiensis Sieb. et Zucc. 610 $aion homeostasis 610 $aphotosynthesis 610 $aPinus massoniana 610 $aStockosorb 610 $awater relations 610 $aNorway spruce 610 $arubber tree 610 $ahydrophilic polymers 610 $adrought stress 610 $aion relationships 610 $aCarpinus betulus 610 $atree rings 610 $aN nutrition 610 $adisturbance 610 $aPopulus simonii Carr. (poplar) 610 $ainfection 610 $asubcellular localization 610 $abasal area increment 610 $amixed stands 610 $aphotosynthetic responses 610 $aAleppo pine 610 $awater potential 610 $aelevation gradient 610 $aliving cell 610 $aphysiological response 610 $aantioxidant enzyme activity 610 $aion contents 610 $asignal network 610 $aexpression 610 $asoil N 610 $aGA-signaling pathway 610 $adifferentially expressed genes 610 $aCa2+ signal 610 $aclimate 610 $aecophysiology 610 $aRobinia pseudoacacia L. 610 $aHeterobasidion parviporum 610 $amid-term 610 $aplant tolerance 610 $acanopy conductance 610 $aDELLA 610 $atapping panel dryness 610 $aosmotic adjustment substances 610 $aabiotic stress 610 $awood formation 610 $amalondialdehyde 610 $asalinity treatments 610 $aorganic osmolytes 610 $abamboo forest 610 $anon-structural carbohydrate 610 $aAbies alba Mill. 610 $atree 610 $asalt stress 610 $aPopulus euphratica 610 $aproline 610 $anutrition 610 $aCarpinus turczaninowii 610 $aplasma membrane Ca2+ channels 610 $agene regulation 610 $apathogen 610 $aTCP 610 $aforest type 610 $afunctional analysis 610 $aFraxinus mandshurica Rupr. 610 $along-term drought 610 $adefense response 610 $acold stress 610 $asilicon fertilization 610 $agas exchange 610 $aFagus sylvatica L. 610 $aglutaredoxin 610 $awater availability 610 $a24-epiBL application 610 $aKonjac glucomannan 610 $aleaf properties 610 $areactive oxygen species 610 $asap flow 610 $a?13C 610 $asalinity 610 $amorphological indices 610 $achloroplast ultrastructure 610 $aMoso Bamboo (Phyllostachys edulis) 610 $adrought 610 $asoluble sugar 610 $amolecular cloning 610 $astarch 610 $agrowth 700 $aPolle$b Andrea$4auth$01320457 702 $aRennenberg$b Heinz$4auth 906 $aBOOK 912 $a9910367755303321 996 $aPhysiological Responses to Abiotic and Biotic Stress in Forest Trees$93034331 997 $aUNINA