LEADER 04596nam 22011053a 450 001 9910367752003321 005 20250203235429.0 010 $a9783039216178 010 $a3039216171 024 8 $a10.3390/books978-3-03921-617-8 035 $a(CKB)4100000010106197 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/46557 035 $a(ScCtBLL)a4ce77e1-3756-4663-869f-2ec8f51bb841 035 $a(OCoLC)1163856599 035 $a(oapen)doab46557 035 $a(EXLCZ)994100000010106197 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aEntropy in Dynamic Systems$fJ. A. Tenreiro Machado, Jan Awrejcewicz 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (172 p.) 311 08$a9783039216161 311 08$a3039216163 330 $aIn order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed. 606 $aHistory of engineering and technology$2bicssc 610 $anonautonomous (autonomous) dynamical system 610 $astabilization 610 $amulti-time scale fractional stochastic differential equations 610 $aconditional Tsallis entropy 610 $awavelet transform 610 $ahyperchaotic system 610 $aChua?s system 610 $apermutation entropy 610 $aneural network method 610 $aInformation transfer 610 $aself-synchronous stream cipher 610 $acolored noise 610 $aBenettin method 610 $amethod of synchronization 610 $atopological entropy 610 $ageometric nonlinearity 610 $aKantz method 610 $adynamical system 610 $aGaussian white noise 610 $aphase-locked loop 610 $awavelets 610 $aRosenstein method 610 $am-dimensional manifold 610 $adeterministic chaos 610 $adisturbation 610 $aMittag?Leffler function 610 $aapproximate entropy 610 $abounded chaos 610 $aAdomian decomposition 610 $afractional calculus 610 $aproduct MV-algebra 610 $aTsallis entropy 610 $adescriptor fractional linear systems 610 $aanalytical solution 610 $afractional Brownian motion 610 $atrue chaos 610 $adiscrete mapping 610 $apartition 610 $aunbounded chaos 610 $afractional stochastic partial differential equation 610 $anoise induced transitions 610 $arandom number generator 610 $aFourier spectrum 610 $ahidden attractors 610 $a(asymptotical) focal entropy point 610 $aregular pencils 610 $acontinuous flow 610 $aBernoulli?Euler beam 610 $aimage encryption 610 $aGauss wavelets 610 $aLyapunov exponents 610 $adiscrete fractional calculus 610 $aLorenz system 610 $aSchur factorization 610 $adiscrete chaos 610 $aWolf method 615 7$aHistory of engineering and technology 700 $aTenreiro Machado$b J. A$01787768 702 $aAwrejcewicz$b Jan 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910367752003321 996 $aEntropy in Dynamic Systems$94321713 997 $aUNINA