LEADER 04500nam 2201237z- 450 001 9910367750103321 005 20231214133410.0 010 $a3-03921-687-2 035 $a(CKB)4100000010106216 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/43704 035 $a(EXLCZ)994100000010106216 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputational Methods for Fracture 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 electronic resource (404 p.) 311 $a3-03921-686-4 330 $aThis book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied. 610 $aBrittle Fracture 610 $amicrostructure 610 $afatigue crack growth 610 $afracture process zone (FPZ) 610 $acrack shape change 610 $afracture network modeling 610 $aMohr-Coulomb 610 $afracture 610 $aSBFEM 610 $atopological insulator 610 $afatigue 610 $aprogressive collapse analysis 610 $aPhase-field model 610 $aloss of key components 610 $aconcrete creep 610 $acompressive stress 610 $arail squats 610 $acracks 610 $aforce transfer 610 $arolling contact 610 $adamage-plasticity model 610 $aimplicit gradient-enhancement 610 $aextended scaled boundary finite element method (X-SBFEM) 610 $athree-parameter model 610 $aLEFM 610 $aoverall stability 610 $aEPB shield machine 610 $ametallic glass matrix composite 610 $aphase field 610 $areinforced concrete core tube 610 $abulk damage 610 $aductility 610 $athermomechanical analysis 610 $aincompatible approximation 610 $amoderate fire 610 $afinite element simulations 610 $ashear failure 610 $aFSDT 610 $agradient-enhanced model 610 $aprestressing stress 610 $aself-healing 610 $aperidynamics 610 $adamage-healing mechanics 610 $astress intensity factors 610 $adamage 610 $adam stress zones 610 $ashear band 610 $arock fracture 610 $arandom fracture 610 $asurface crack 610 $aplate 610 $asteel reinforced concrete frame 610 $asuper healing 610 $abrittle material 610 $ageometric phase 610 $aFE analysis 610 $agrouting 610 $arock 610 $aelastoplastic behavior 610 $aparameters calibration 610 $ascreened-Poisson model 610 $aanisotropic 610 $anumerical simulation 610 $aDiscontinuous Galerkin 610 $abrittle fracture 610 $aXFEM/GFEM 610 $atopological photonic crystal 610 $aphotonic orbital angular momentum 610 $aconditioned sandy pebble 610 $ayielding region 610 $afinite element analysis 610 $afluid-structure interaction 610 $acracking risk 610 $aMindlin 610 $aABAQUS UEL 610 $aparticle element model 610 $aHSDT 610 $acell-based smoothed-finite element method (CS-FEM) 610 $athe Xulong arch dam 700 $aRabczuk$b Timon$4auth$01302269 906 $aBOOK 912 $a9910367750103321 996 $aComputational Methods for Fracture$93026320 997 $aUNINA