LEADER 03697nam 2200661 450 001 9910438308803321 005 20221206181953.0 010 $a0-7680-8709-0 010 $a0-7680-8000-2 024 7 $a10.4271/PT-159 035 $a(CKB)4340000000240302 035 $a(MiAaPQ)EBC5341841 035 $a(CaBNVSL)mat08505026 035 $a(IDAMS)0b000064887658eb 035 $a(IEEE)8505026 035 $a(MiAaPQ)EBC28983813 035 $a(Au-PeEL)EBL28983813 035 $a(EXLCZ)994340000000240302 100 $a20181229d2013 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aKinetic energy recovery systems for racing cars /$fedited by Alberto Boretti 205 $a1st ed. 210 1$aWarrendale, Pa. (400 Commonwealth Dr., Wallendale PA USA) :$cSociety of Automotive Engineers,$dc2013. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2013] 215 $a1 online resource (v, 49 pages) $cillustrations 225 1 $aProgress in technology ;$vPT-159 225 1 $aSociety of Automotive Engineers. Electronic publications 300 $a"SAE Order Number PT-159"--T.p. verso. 311 $a0-7680-7994-2 320 $aIncludes bibliographical references. 327 $aIntroduction. Friction and Regenerative Braking ; Motorsport and Newton's Second Law ; Recovery of Kinetic Energy ; Flybrid Mechanical KERS ; The Dyson Lola LMP1 Car with Flybrid KERS ; The Audi R18 e-tron Quattro Le Mans ; Overview of Four Papers on KERS and F1 Racing -- 327 $aPapers. Optimization of Hybrid Kinetic Energy Recovery Systems (KERS) for Different Racing Circuits, SAE Technical Paper 2008-01-2956, 2008, doi:10.4271/2008-01-2956 / Cross, D -- Mechanical Hybrid System Comprising a Flywheel and CVT for Motorsport and Mainstream Automotive Applications, SAE Technical Paper 2009-01-1312, 2009, doi:10.4271/2009-01-1312 / D. Cross and C. Brockbank -- High Power Density Motor for Racing Use, SAE Technical Paper 2011-39-7221, 2011, doi:10.4271/2011-39-7221/ Tamotsu Kawamura, Hirofumi Atarashi, and Takehiro Miyoshi -- KERS Braking for 2014 F1 Cars, SAE Technical Paper 2012-01-1802, 2012, doi:10.4271/2012-01-1802 / A. Boretti. 330 3 $aA kinetic energy recover system (KERS) captures the kinetic energy that results when brakes are applied to a moving vehicle. The recovered energy can be stored in a flywheel or battery and used later, to help boost acceleration. KERS helps transfer what was formerly wasted energy into useful energy. 330 8 $aIn 2009, the Federation Internationale de l'Automobile (FIA) began allowing KERS to be used in Formula One (F1) competition. Still considered experimental, this technology is undergoing development in the racing world but has yet to become mainstream for production vehicles. 410 0$aProgress in technology ;$vPT-159. 606 $aFormula One automobiles 606 $aAutomobiles$xTechnological innovations 606 $aAutomobiles$xEnergy consumption$xResearch 606 $aAutomobiles$xDesign and construction 606 $aSystems engineering 615 0$aFormula One automobiles. 615 0$aAutomobiles$xTechnological innovations. 615 0$aAutomobiles$xEnergy consumption$xResearch. 615 0$aAutomobiles$xDesign and construction. 615 0$aSystems engineering. 676 $a333.7968 701 $aBoretti$b Alberto A$01206846 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910438308803321 996 $aKinetic energy recovery systems for racing cars$92783995 997 $aUNINA LEADER 03527nam 22008653a 450 001 9910367748303321 005 20250203235425.0 010 $a9783039215416 010 $a3039215418 024 8 $a10.3390/books978-3-03921-541-6 035 $a(CKB)4100000010106234 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54882 035 $a(ScCtBLL)feb61755-ae6d-416c-a91c-6f0171624e7c 035 $a(OCoLC)1163856788 035 $a(oapen)doab54882 035 $a(EXLCZ)994100000010106234 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNovel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions$fYongjun Feng, Nicolas Alonso-Vante, Hui Yang 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (190 p.) 311 08$a9783039215409 311 08$a303921540X 330 $aResearch on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction. 610 $anitrogen sulfur co-doped carbon nanofibers 610 $alayered double hydroxide 610 $athree-dimensional 610 $awater splitting 610 $anon-precious metal 610 $ametal-organic framework 610 $aCo-bpdc/MWCNTs composites 610 $aalkaline 610 $ananocarbon 610 $aFe-N-C catalyst 610 $acobalt-based electrocatalysts 610 $a2 610 $anon-precious metal catalyst 610 $a3 610 $asilver bismuthate 610 $a4 610 $agraphene-carbon nanotube aerogel 610 $a6-tri(2-pyridyl)-1 610 $aCo-bpdc 610 $abinary nitrogen precursors 610 $ag-C3N4 610 $aoxygen evolution reaction 610 $amesoporous NiO 610 $aelectrocatalyst 610 $anucleophilic attack 610 $a5-triazine 610 $acobalt and nitrogen co-doped 610 $afuel cells 610 $ametal-free catalysts 610 $aoxygen reduction reaction 610 $ahydrogen evolution reaction 610 $aheteroatom doping 610 $aelectrophilic Ni3+ and O? 610 $abacterial cellulose/poly(methylene blue) hybrids 610 $aactive site 610 $amanganese dioxide 610 $aelectrocatalysis 700 $aFeng$b Yongjun$01787924 702 $aAlonso-Vante$b Nicolas 702 $aYang$b Hui 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910367748303321 996 $aNovel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions$94322003 997 $aUNINA