LEADER 04712nam 2201225z- 450 001 9910367742803321 005 20210211 010 $a3-03921-635-X 035 $a(CKB)4100000010106289 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/53149 035 $a(oapen)doab53149 035 $a(EXLCZ)994100000010106289 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMEMS/NEMS Sensors: Fabrication and Application 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 online resource (242 p.) 311 08$a3-03921-634-1 330 $aDue to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors. Despite a long history of development, fabrication of novel MEMS/NEMS devices still poses unique challenges due to their requirement for a suspended geometry; and many new fabrication techniques have been proposed to overcome these challenges. However, further development of these techniques is still necessary, as newer materials such as compound semiconductors, and 2-dimensional materials are finding their way in various MEMS/NEMS applications, with more complex structures and potentially smaller dimensions. 517 $aMEMS/NEMS Sensors 606 $aHistory of engineering and technology$2bicssc 610 $a3D simulation 610 $aacceleration switch 610 $aaccelerometer 610 $aaccelerometer design 610 $aAccelerometer readout 610 $aadaptive control 610 $aAlGaN/GaN circular HFETs 610 $aanalytical model 610 $aanisotropy 610 $aback cavity 610 $abackstepping approach 610 $abonding strength 610 $adeflection position detector 610 $adual-mass MEMS gyroscope 610 $aelectrostatic force feedback 610 $afemtosecond laser 610 $afloating slug 610 $afrequency mismatch 610 $afrequency split 610 $afrequency tuning 610 $aGaAs MMIC 610 $aGaN diaphragm 610 $agas sensor 610 $aglass welding 610 $ahigh temperature pressure sensors 610 $ainertial switch 610 $ainfrared image 610 $alevel-set method 610 $alow noise 610 $alow zero-g offset 610 $amagnetic 610 $aMEMS 610 $aMEMS (micro-electro-mechanical system) 610 $amethane 610 $amicro fluidic 610 $amicro-NIR spectrometer 610 $amicroactuator 610 $amicrodroplet 610 $amicrofluidic 610 $amicrogyroscope 610 $amicropellistor 610 $amicrowave measurement 610 $an/a 610 $ananoparticle sensor 610 $aoil detection 610 $aoptical sensor 610 $aoptomechanical sensor 610 $aphotonic crystal cavity 610 $aphotonic crystal nanobeam cavity 610 $apower consumption 610 $apulse inertia force 610 $aquadrature modulation signal 610 $arapid fabrication 610 $arefractive index sensor 610 $aresistance parameter 610 $aresonant frequency 610 $ascanning grating mirror 610 $asilicon 610 $asingle crystal silicon 610 $asingle-layer SiO2 610 $aspring design 610 $asqueeze-film damping 610 $asuspended micro hotplate 610 $atemperature sensor 610 $atemperature uniformity 610 $atetramethylammonium hydroxide (TMAH) 610 $athermoelectric power sensor 610 $athreshold accuracy 610 $atracking performance 610 $atunnel magnetoresistive effect 610 $avibrating ring gyroscope 610 $awet etching 610 $awideband 615 7$aHistory of engineering and technology 700 $aKoley$b Goutam$4auth$01323722 702 $aJahangir$b Ifat$4auth 906 $aBOOK 912 $a9910367742803321 996 $aMEMS$93035773 997 $aUNINA