LEADER 05094nam 2200589 a 450 001 9910831167303321 005 20230617021330.0 010 $a1-280-52034-5 010 $a9786610520343 010 $a3-527-60525-8 010 $a3-527-60200-3 035 $a(CKB)1000000000019298 035 $a(EBL)482035 035 $a(OCoLC)68924513 035 $a(SSID)ssj0000120438 035 $a(PQKBManifestationID)11130254 035 $a(PQKBTitleCode)TC0000120438 035 $a(PQKBWorkID)10081129 035 $a(PQKB)11714850 035 $a(MiAaPQ)EBC482035 035 $a(EXLCZ)991000000000019298 100 $a20040623d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChemical metallurgy$b[electronic resource] $eprinciples and practice /$fChiranjib Kumar Gupta 210 $aWeinheim, Germany ;$a[Cambridge] $cWiley-VCH$dc2003 215 $a1 online resource (833 p.) 300 $aDescription based upon print version of record. 311 $a3-527-30376-6 320 $aIncludes bibliographical references and index. 327 $aChemical Metallurgy; Foreword; Preface; Acknowledgements; Appreciation; Contents; 1 Acquaintance; 1.1 Introduction; 1.2 Materials; 1.3 Some Characteristics of Metals; 1.3.1 General; 1.3.2 Electronic Structure; 1.3.3 Crystallography; 1.3.3.1 Crystal Systems; 1.3.3.2 Metallic Crystal Structures; 1.3.4 Alloying; 1.3.5 Mechanical Properties; 1.3.5.1 Elastic Deformation; 1.3.5.2 Plastic Deformation; 1.3.5.3 Creep Deformation and Fatigue Deformation; 1.3.5.4 Hardness; 1.3.5.5 Toughness; 1.4 Resources of Metals; 1.4.1 General; 1.4.2 Earth's Crust; 1.4.3 Minerals and Ores 327 $a1.4.4 Rocks and Ore Deposits1.4.4.1 Igneous Processes of Rock and Ore Formation; 1.4.4.2 Sedimentary Rocks and Sedimentary Processes of Ore Formation; 1.4.4.3 Metamorphic Rocks and Ore Processes; 1.4.5 Other Resources; 1.5 Mineral Properties; 1.6 Mining; 1.6.1 Surface Mining; 1.6.2 Underground Mining; 1.7 Availability; 1.8 Resource Classification; 1.9 Minerals Description; 1.9.1 Molybdenum; 1.9.2 Nickel; 1.9.3 Niobium-Tantalum; 1.9.4 Rare Earths; 1.9.5 Uranium; 1.10 Extraction Flowsheets; 1.10.1 Features; 1.10.2 Process Routes; 1.10.3 Process Reactors; 1.10.3.1 Heat Sources 327 $a1.10.3.1.1 Solid Fuels1.10.3.1.2 Liquid Fuels; 1.10.3.1.3 Gaseous Fuels; 1.10.3.2 Refractories; 1.10.3.2.1 Classification; 1.10.3.2.2 Physical and Chemical Characteristics; 1.11 Literature; 2 Mineral Processing; 2.1 Introduction; 2.2 Particles; 2.2.1 Particle Shape; 2.2.1.1 Shape Factor; 2.2.1.2 Qualitative and Quantitative Definitions; 2.2.2 Particle Size; 2.2.2.1 Particle Size Measurement; 2.2.3 Surface; 2.2.3.1 Permeability; 2.2.3.2 Gas Adsorption; 2.3 Comminution; 2.3.1 Fracture of Materials; 2.3.1.1 Fracture Mechanisms; 2.3.2 Energy and Power Requirements 327 $a2.3.2.1 Energy Size Relationship2.3.2.2 Bond Law; 2.3.2.3 Crushing Efficiency; 2.3.3 Liberation; 2.3.4 Machine Selection; 2.3.5 Machine Types; 2.3.5.1 Crushers; 2.3.5.2 Grinders; 2.3.6 Circuits; 2.3.7 Operational Aspects; 2.4 Mineral Separation; 2.5 Fluid Dynamic Principles; 2.5.1 Particle Settling Phenomena; 2.5.2 Free Settling and Hindered Settling; 2.5.3 Particle Separation; 2.6 Classification; 2.6.1 Classifier Machinery; 2.6.1.1 Mechanical Classifiers; 2.6.1.2 Hydraulic Classifiers; 2.6.1.3 Hydrocyclones; 2.7 Screening; 2.7.1 Passage of Particles; 2.7.2 Ideal and Actual Screens 327 $a2.7.3 Material Balances2.7.4 Screen Efficiency and Capacity; 2.7.5 Types of Screens; 2.8 Gravity Concentration; 2.8.1 Gravity Separation Machines; 2.8.1.1 Jigs; 2.8.1.2 Spirals; 2.8.1.3 Tables; 2.8.1.4 Heavy Medium Separators; 2.9 Magnetic Separation; 2.9.1 Magnetic Separators; 2.9.2 Principles; 2.10 Electrostatic Separation; 2.10.1 Electrostatic Separators; 2.11 Flotation; 2.11.1 Principles; 2.11.2 Flotation Chemistry; 2.11.2.1 Surfactants; 2.11.2.1.1 Frothers; 2.11.2.1.2 Collectors; 2.11.2.1.3 Regulators; 2.11.2.2 Sulfide Flotation; 2.11.2.2.1 Principles; 2.11.2.2.2 Examples 327 $a2.11.2.3 Natural Hydrophobicity 330 $aChemical metallurgy is a well founded and fascinating branch of the wide field of metallurgy. This book provides detailed information on both the first steps of separation of desirable minerals and the subsequent mineral processing operations. The complex chemical processes of extracting various elements through hydrometallurgical, pyrometallurgical or electrometallurgical operations are explained. In the choice of material for this work, the author made good use of the synergy of scientific principles and industrial practices, offering the much needed and hitherto unavailable combination 606 $aChemistry, Metallurgic 615 0$aChemistry, Metallurgic. 676 $a669.9 676 $a669/.9 700 $aGupta$b C. K$0722539 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910831167303321 996 $aChemical metallurgy$93926729 997 $aUNINA LEADER 02948nam 2200625z- 450 001 9910367740003321 005 20210211 010 $a3-03921-877-8 035 $a(CKB)4100000010106317 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/49293 035 $a(oapen)doab49293 035 $a(EXLCZ)994100000010106317 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHigher Symmetries and Its Application in Microwave Technology, Antennas and Metamaterials 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 online resource (98 p.) 311 08$a3-03921-876-X 330 $aArtificial materials have been widely studied and used in photonics and microwaves in the last few decades. Recent research has proven that the introduction of specific higher symmetries in each cell of a periodic medium is an effective approach to obtain unprecedented exotic behaviors and to overcome the current limitations of these devices. For example, simple symmetries of a purely spatial type (glide or twist transformations) can have a huge impact on the properties of the resulting materials, thus defining wideband behaviors for flat lenses or large stop bands for novel EBG materials. This Special Issue opens with a novel discussion on the effect of time-reversal symmetries in antenna theory and presents new structures exploiting symmetries for antenna and microwave components, such as flat lenses, helix antennas, and gap-waveguides. Finally, new modeling methods are discussed for the study of wave propagation along glide surfaces and twist lines. 606 $aHistory of engineering and technology$2bicssc 610 $aAntennas 610 $abed of nails 610 $acomplementary split ring resonator (CSRR) 610 $acomplementary split-ring resonator 610 $adispersion 610 $adispersion analysis 610 $adispersion diagram 610 $agap waveguide technology 610 $aglide symmetry 610 $ahelix antennas 610 $ahigher symmetries 610 $ahigher symmetry 610 $alens antenna 610 $aLorentz reciprocity 610 $amicrowave printed circuits 610 $amode matching 610 $aperiodic structures 610 $arefractive index 610 $asingle plane 610 $astop-band 610 $astopband 610 $aTime-reversal symmetry 610 $atransmission matrix 610 $atwist symmetry 615 7$aHistory of engineering and technology 700 $aValerio$b Guido$4auth$01290159 702 $aQuevedo-Teruel$b Oscar$4auth 906 $aBOOK 912 $a9910367740003321 996 $aHigher Symmetries and Its Application in Microwave Technology, Antennas and Metamaterials$93021367 997 $aUNINA