LEADER 07877nam 2202137z- 450 001 9910367565503321 005 20231214132843.0 010 $a3-03921-378-4 035 $a(CKB)4100000010106091 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/52524 035 $a(EXLCZ)994100000010106091 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMachining?Recent Advances, Applications and Challenges 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 electronic resource (554 p.) 311 $a3-03921-377-6 330 $aThe Special Issue Machining?Recent Advances, Applications and Challenges is intended as a humble collection of some of the hottest topics in machining. The manufacturing industry is a varying and challenging environment where new advances emerge from one day to another. In recent years, new manufacturing procedures have retained increasing attention from the industrial and scientific community. However, machining still remains the key operation to achieve high productivity and precision for high-added value parts. Continuous research is performed, and new ideas are constantly considered. This Special Issue summarizes selected high-quality papers which were submitted, peer-reviewed, and recommended by experts. It covers some (but not only) of the following topics: High performance operations for difficult-to-cut alloys, wrought and cast materials, light alloys, ceramics, etc.; Cutting tools, grades, substrates and coatings. Wear damage; Advanced cooling in machining: Minimum quantity of lubricant, dry or cryogenics; Modelling, focused on the reduction of risks, the process outcome, and to maintain surface integrity; Vibration problems in machines: Active and passive/predictive methods, sources, diagnosis and avoidance; Influence of machining in new concepts of machine?tool, and machine static and dynamic behaviors; Machinability of new composites, brittle and emerging materials; Assisted machining processes by high-pressure, laser, US, and others; Introduction of new analytics and decision making into machining programming. We wish to thank the reviewers and staff from Materials for their comments, advice, suggestions and invaluable support during the development of this Special Issue. 610 $ain situ estimation 610 $amodeling 610 $asimulation 610 $avariable pitch 610 $aX-ray diffraction 610 $acutting edge preparation 610 $aplastic zone 610 $aflank milling 610 $asurface roughness 610 $apower consumption 610 $acutting tool 610 $afatigue 610 $aadditive manufacturing 610 $aoptimization 610 $atrochoidal step 610 $asurface topography 610 $asinusoidal grid 610 $amilling 610 $adesirability approach 610 $aelectrochemical discharge machining 610 $afast simulation 610 $aInconel 718 610 $asecondary adhesion wear 610 $amachinability 610 $ahybrid stacks drilling 610 $acooling rate 610 $ashape memory alloy 610 $aresidual stress 610 $adiameter variation 610 $aturning 610 $acomputer vision 610 $aworkholding 610 $aon-machine monitoring 610 $achip morphology 610 $adry-cutting 610 $aturning machine tools 610 $aSACE-drilled hole depth 610 $aresidual stresses 610 $acryogenic machining 610 $aprime machining costs 610 $aPVD Ti0.41Al0.59N/Ti0.55Al0.45N coating 610 $asingle point incremental sheet forming 610 $abutt weld joint 610 $adish angle 610 $amachining characteristic 610 $aDSC test 610 $asegmented diamond blade 610 $acutting tool wear 610 $aultra-precision machining 610 $aceramics 610 $ashape memory effect 610 $acurrent density 610 $afractal dimension 610 $acrack growth rate 610 $adrilling 610 $aforce?temperature correlation through analytical modeling 610 $afinite element model 610 $aanalytic solution 610 $aaluminium 610 $ataguchi method 610 $amulti-objective optimization 610 $areal-time prediction 610 $aGamma-TiAl 610 $acutting temperature 610 $aEN 31 steel 610 $asuperalloys 610 $amaterial-removal rate 610 $aglass machining 610 $acorner radius 610 $athin-wall machining 610 $avibration 610 $aGPU 610 $atitanium aluminides 610 $aminimum quantity lubrication 610 $amachining temperatures at two deformation zones 610 $afinite element method 610 $aroughness 610 $aslight materials 610 $ahigh computational efficiency 610 $adynamic 610 $aadhesive 610 $aheat transfer analysis 610 $aconnections 610 $astability 610 $avibrations 610 $atrochoidal milling 610 $amagnesium alloys 610 $aspecific cutting energy 610 $alaser-assisted machining 610 $aartificial neutral network 610 $amicroscopic analysis 610 $aMilling stability 610 $atopography 610 $aweight loss 610 $amodal testing 610 $asustainable machining 610 $adry 610 $adamping 610 $aductile machining 610 $aInconel® 718 610 $amodelling 610 $acutting edge microgeometry 610 $aelectropulsing 610 $aPCD 610 $acutting geometry 610 $afixture 610 $aartificial neural networks 610 $aspark-assisted chemical engraving 610 $amachining 610 $aspecific energy consumption 610 $aheat transfer search algorithm 610 $amaterial removal rate 610 $aprediction 610 $aCFRP/UNS A92024 610 $atool wear 610 $atitanium alloy 610 $amulti-beam laser 610 $achip compression ratio 610 $adesign of experiments 610 $aconcrete 610 $aANN 610 $atitanium 610 $achatter 610 $aresponse surface methodology 610 $amachine tool 610 $asuperelastic nitinol 610 $aoptimal machining conditions 610 $amachine vision 610 $asteel sheet 610 $acutting process 610 $afracture mechanism 610 $aself-excitation 610 $atool insert condition 610 $ainduction assisted milling 610 $ahole quality 610 $aGA 610 $atitanium alloys 610 $amicrolens array 610 $aparameter identification 610 $aTaguchi method 610 $aweld reinforcement 610 $aslow tool servo 610 $acutting parameters 610 $aflank super abrasive machining (SAM) 610 $astiffness properties 610 $agrey relational analysis 610 $adeflection 610 $acomputer numerical control 610 $agrain density 610 $asurface grinding 610 $athe cutting force components 610 $aHuber?Mises stress 610 $aWEDM 700 $aUrbicain$b Gorka$4auth$01290171 702 $aLópez de Lacalle$b Luis Norberto$4auth 906 $aBOOK 912 $a9910367565503321 996 $aMachining?Recent Advances, Applications and Challenges$93040466 997 $aUNINA