LEADER 05675nam 2200745Ia 450 001 9910458545903321 005 20200520144314.0 010 $a1-281-38319-8 010 $a9786611383190 010 $a981-277-415-7 035 $a(CKB)1000000000398210 035 $a(EBL)1679577 035 $a(OCoLC)879074248 035 $a(SSID)ssj0000072362 035 $a(PQKBManifestationID)11118904 035 $a(PQKBTitleCode)TC0000072362 035 $a(PQKBWorkID)10094490 035 $a(PQKB)10725313 035 $a(MiAaPQ)EBC1679577 035 $a(WSP)00006043 035 $a(Au-PeEL)EBL1679577 035 $a(CaPaEBR)ebr10201359 035 $a(CaONFJC)MIL138319 035 $a(EXLCZ)991000000000398210 100 $a20061016d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntegrated and collaborative product development environment$b[electronic resource] $etechnologies and implementations /$fW.D. Li, S.K. Ong, A.Y.C. Nee 210 $aSingapore ;$aHackensack, NJ $cWorld Scientific$dc2006 215 $a1 online resource (348 p.) 225 1 $aSeries on manufacturing systems and technology ;$vv. 2 300 $aDescription based upon print version of record. 311 $a981-256-680-5 320 $aIncludes bibliographical references (p. 313-325) and index. 327 $aContents ; Preface ; Abbreviation ; 1. Introduction ; 1.1 Concurrent and Collaborative Engineering ; 1.2 Enabling Technologies ; 1.2.1 Artificial intelligence ; 1.2.2 Internet technologies ; 1.3 Summary ; 2. Manufacturing Feature Recognition Technology - State-of-the-Art 327 $a2.1 Evolving Representations for Design Models 2.2 Boundary Feature Recognition Scheme ; 2.2.1 Rule-based approach ; 2.2.2 Graph-based approach ; 2.2.3 Hint-based approach ; 2.2.4 Artificial neural networks-based approach ; 2.3 Volumetric Feature Recognition Scheme 327 $a2.3.1 Convex hull approach 2.3.2 Volume growing/decomposition approach ; 2.4 Integration of Design-by-Feature and Feature Recognition ; 2.5 Summary ; 3. A Hybrid Method for Interacting Manufacturing Feature Recognition ; 3.1 Introduction ; 3.2 Enhanced Attributed Adjacency Graph 327 $a3.2.1 Pre-process for generating EAAG 3.2.2 Establishment of EAAG ; 3.3 Generation of Potential Features ; 3.3.1 Identifications of F-Loops and their relationships ; 3.3.2 Identifications of FLGs ; 3.4 Neural Networks Classifier ; 3.5 Computation Results 327 $a3.5.1 Results for feature recognition 3.5.2 Result comparisons ; 3.6 Summary ; 4. Integration of Design-by-Feature and Manufacturing Feature Recognition ; 4.1 Introduction ; 4.2 Features and Their Relationships ; 4.2.1 Feature models ; 4.2.2 Interacting relationships between features 327 $a4.3 Manufacturing Features Recognition Processor 330 $a With the rapid advances in computing and Internet technologies, an integrated and collaborative environment, which is based on the complementary functions of concurrent engineering and Internet-based collaborative engineering, is imperative for companies to facilitate and expedite the product realization processes. Topics such as concurrent and collaborative engineering, feature-based design and manufacturing, evolutionary computational techniques such as Tabu Search, Simulated Annealing, Genetic Algorithms features, intelligent and computer-aided process planning are important strategies and 410 0$aSeries on manufacturing systems and technology ;$vv. 2. 606 $aComputer integrated manufacturing systems 606 $aIndustrial design$xData processing 606 $aNew products$xTechnological innovations 606 $aProduction planning$xData processing 608 $aElectronic books. 615 0$aComputer integrated manufacturing systems. 615 0$aIndustrial design$xData processing. 615 0$aNew products$xTechnological innovations. 615 0$aProduction planning$xData processing. 676 $a670.285 700 $aLi$b W. D$0875386 701 $aNee$b A. Y. C$g(Andrew Yeh Chris),$f1948-$0875387 701 $aOng$b S. K.$f1969-$0875388 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910458545903321 996 $aIntegrated and collaborative product development environment$91954391 997 $aUNINA LEADER 04359 am 22008533u 450 001 9910367258203321 005 20230125191059.0 010 $a3-030-22386-8 024 7 $a10.1007/978-3-030-22386-1 035 $a(CKB)4100000009606115 035 $a(OAPEN)1007135 035 $a(MiAaPQ)EBC6114378 035 $a(DE-He213)978-3-030-22386-1 035 $a(Au-PeEL)EBL6114378 035 $a(OCoLC)1143642007 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/34628 035 $a(PPN)260301523 035 $a(EXLCZ)994100000009606115 100 $a20191017d2020 u| 0 101 0 $aeng 135 $auuuuu---auuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBioimage Data Analysis Workflows$b[electronic resource] /$fedited by Kota Miura, Nata?a Sladoje 205 $a1st ed. 2020. 210 $aCham$cSpringer Nature$d2020 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (170) 225 1 $aLearning Materials in Biosciences,$x2509-6125 311 $a3-030-22385-X 327 $aWorkflows and Components of Bioimage Analysis -- Measurements of Intensity Dynamics at the Periphery of the Nucleus -- 3D Quantitative Colocalisation Analysis -- The NEMO Dots Assembly: Single-Particle Tracking and Analysis -- Introduction to MATLAB: Image Analysis & Brownian Motion -- Resolving the process of Clathrin Mediated Endocytosis Using Correlative Light & Electron Microscopy (CLEM). 330 $aThis Open Access textbook provides students and researchers in the life sciences with essential practical information on how to quantitatively analyze data images. It refrains from focusing on theory, and instead uses practical examples and step-by step protocols to familiarize readers with the most commonly used image processing and analysis platforms such as ImageJ, MatLab and Python. Besides gaining knowhow on algorithm usage, readers will learn how to create an analysis pipeline by scripting language; these skills are important in order to document reproducible image analysis workflows. The textbook is chiefly intended for advanced undergraduates in the life sciences and biomedicine without a theoretical background in data analysis, as well as for postdocs, staff scientists and faculty members who need to perform regular quantitative analyses of microscopy images. 410 0$aLearning Materials in Biosciences,$x2509-6125 606 $aBiomedical engineering 606 $aCell biology 606 $aBioinformatics 606 $aBiology?Technique 606 $aSystems biology 606 $aBiological systems 606 $aBiomedical Engineering/Biotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/B24000 606 $aCell Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/L16008 606 $aComputational Biology/Bioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/I23050 606 $aBiological Techniques$3https://scigraph.springernature.com/ontologies/product-market-codes/L28000 606 $aSystems Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/P27050 610 $aMedicine 610 $aBiomedical engineering 610 $aCell biology 610 $aBioinformatics 610 $aBiology?Technique 610 $aSystems biology 610 $aBiological systems 615 0$aBiomedical engineering. 615 0$aCell biology. 615 0$aBioinformatics. 615 0$aBiology?Technique. 615 0$aSystems biology. 615 0$aBiological systems. 615 14$aBiomedical Engineering/Biotechnology. 615 24$aCell Biology. 615 24$aComputational Biology/Bioinformatics. 615 24$aBiological Techniques. 615 24$aSystems Biology. 676 $a610.28 700 $aMiura$b Kota$4edt$01355558 702 $aMiura$b Kota$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSladoje$b Nata?a$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910367258203321 996 $aBioimage Data Analysis Workflows$93360616 997 $aUNINA