LEADER 04618nam 22008055 450 001 9910366619703321 005 20200705004218.0 010 $a3-030-26965-5 024 7 $a10.1007/978-3-030-26965-4 035 $a(CKB)4100000009522846 035 $a(DE-He213)978-3-030-26965-4 035 $a(MiAaPQ)EBC6112338 035 $a(PPN)258061081 035 $a(EXLCZ)994100000009522846 100 $a20191010d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aChemical Rockets$b[electronic resource] $ePerformance Prediction and Internal Ballistics Design /$fby Subramaniam Krishnan, Jeenu Raghavan 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XI, 538 p. 23 illus., 2 illus. in color.) 225 1 $aSpringer Aerospace Technology,$x1869-1730 311 $a3-030-26964-7 320 $aIncludes bibliographical references and index. 327 $aPartI: Performance Calculation of Chemical Propellants by Energy Minimization -- Chapter1: Introduction -- Chapter2: Chemical Potential -- Chapter3: Mass Balance -- Chapter4: Iteration Equations -- Chapter5: Thermodynamic Derivatives -- Chapter6: Thermodynamic Data -- Chapter7: Theoretical Rocket Performance -- PartII: Performance Prediction and Internal Ballistics Design of Solid Propellant Rocket Motors -- Chapter8: Introduction -- Chapter9: Equilibrium?Pressure Analysis -- Chapter10: Incremental Analysis -- Chapter11: Computer Program. 330 $aThe purpose of this book is to discuss, at the graduate level, the methods of performance prediction for chemical rocket propulsion. A pedagogical presentation of such methods has been unavailable thus far and this text, based upon lectures, fills this gap. The first part contains the energy-minimization to calculate the propellant-combustion composition and the subsequent computation of rocket performance. While incremental analysis is for high performance solid motors, equilibrium-pressure analysis is for low performance ones. Both are detailed in the book's second part for the prediction of ignition and tail-off transients, and equilibrium operation. Computer codes, adopting the incremental analysis along with erosive burning effect, are included. The material is encouraged to be used and presented at lectures. Senior undergraduate and graduate students in universities, as well as practicing engineers and scientists in rocket industries, form the readership. 410 0$aSpringer Aerospace Technology,$x1869-1730 606 $aAerospace engineering 606 $aAstronautics 606 $aEngineering design 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aFluid mechanics 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aAerospace Technology and Astronautics$3https://scigraph.springernature.com/ontologies/product-market-codes/T17050 606 $aEngineering Design$3https://scigraph.springernature.com/ontologies/product-market-codes/T17020 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 615 0$aAerospace engineering. 615 0$aAstronautics. 615 0$aEngineering design. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 0$aFluid mechanics. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aAerospace Technology and Astronautics. 615 24$aEngineering Design. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 615 24$aEngineering Fluid Dynamics. 615 24$aMathematical and Computational Engineering. 676 $a629.1 700 $aKrishnan$b Subramaniam$4aut$4http://id.loc.gov/vocabulary/relators/aut$0977516 702 $aRaghavan$b Jeenu$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910366619703321 996 $aChemical Rockets$92227051 997 $aUNINA