LEADER 01127nas 2200385 c 450 001 9910142104803321 005 20251012103841.0 035 $a(DE-599)ZDB2436014-4 035 $a(OCoLC)984917252 035 $a(DE-101)989488713 035 $a(CKB)1000000000528750 035 $a(EXLCZ)991000000000528750 100 $a20080707a20019999 |y | 101 0 $aara 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aArkamani$ereview of archaeological & anthropological current research in the Sudan 210 31$a[Erscheinungsort nicht ermittelbar]$c[Verlag nicht ermittelbar]$d2001- 215 $aOnline-Ressource 300 $aGesehen am 01.10.15 517 1 $aArkamani Sudan electronic journal of of archaeology and anthropology 608 $aZeitschrift$2gnd-content 676 $a930 676 $a570 686 $aAFRIKA$qDE-30$2fid 686 $aBIODIV$qDE-30$2fid 801 0$b8999 801 1$bDE-101 801 2$b9999 906 $aJOURNAL 912 $a9910142104803321 996 $aArkamani$94439171 997 $aUNINA LEADER 03573nam 22005775 450 001 9910364956903321 005 20251113211928.0 010 $a3-030-32330-7 024 7 $a10.1007/978-3-030-32330-1 035 $a(CKB)4100000010011880 035 $a(MiAaPQ)EBC5992463 035 $a(DE-He213)978-3-030-32330-1 035 $a(PPN)242818900 035 $a(EXLCZ)994100000010011880 100 $a20191209d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Large Flux Problem to the Navier-Stokes Equations $eGlobal Strong Solutions in Cylindrical Domains /$fby Joanna Renc?awowicz, Wojciech M. Zaj?czkowski 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2019. 215 $a1 online resource (176 pages) 225 1 $aLecture Notes in Mathematical Fluid Mechanics,$x2510-1382 311 08$a3-030-32329-3 327 $aIntroduction -- Notation and auxiliary results -- Energy estimate: Global weak solutions -- Local estimates for regular solutions -- Global estimates for solutions to problem on (v, p) -- Global estimates for solutions to problem on (h, q) -- Estimates for ht -- Auxiliary results: Estimates for (v, p) -- Auxiliary results: Estimates for (h, q) -- The Neumann problem (3.6) in L2-weighted spaces -- The Neumann problem (3.6) in Lp-weighted spaces -- Existence of solutions (v, p) and (h, q). 330 $aThis monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along the axis of the cylinder. This is achieved by utilizing a sophisticated method of deriving energy type estimates for weak solutions and global estimates for regular solutions?an approach that is wholly unique within the existing literature on the Navier-Stokes equations. To demonstrate these results, three main steps are followed: first, the existence of weak solutions is shown; next, the conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics. 410 0$aLecture Notes in Mathematical Fluid Mechanics,$x2510-1382 606 $aDifferential equations 606 $aContinuum mechanics 606 $aFunctional analysis 606 $aDifferential Equations 606 $aContinuum Mechanics 606 $aFunctional Analysis 615 0$aDifferential equations. 615 0$aContinuum mechanics. 615 0$aFunctional analysis. 615 14$aDifferential Equations. 615 24$aContinuum Mechanics. 615 24$aFunctional Analysis. 676 $a515.353 700 $aRenc?awowicz$b Joanna$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781807 702 $aZaj?czkowski$b Wojciech M$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910364956903321 996 $aThe Large Flux Problem to the Navier-Stokes Equations$92529278 997 $aUNINA