LEADER 01078nam 2200325Ia 450 001 996389895303316 005 20200824125204.0 035 $a(CKB)1000000000649291 035 $a(EEBO)2240851815 035 $a(OCoLC)ocm12841428e 035 $a(OCoLC)12841428 035 $a(EXLCZ)991000000000649291 100 $a19851123d1677 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA treatise concerning the Lord's Supper with three dialogues for the more full information of the weak, in the nature and use of this Sacrament$b[electronic resource] /$fby Tho. Doolittle 205 $aThe tenth edition. 210 $aLondon $cPrinted for G. Calvert ..., and S. Sprint ...$d1677 215 $a[10], 251 p 300 $aReproduction of original in Huntington Library. 330 $aeebo-0113 700 $aDoolittle$b Thomas$f1632?-1707.$01004069 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996389895303316 996 $aA treatise concerning the Lords Supper$92309113 997 $aUNISA LEADER 03438nam 22006615 450 001 9910360854803321 005 20251113182656.0 010 $a3-030-25883-1 024 7 $a10.1007/978-3-030-25883-2 035 $a(CKB)4100000009758997 035 $a(DE-He213)978-3-030-25883-2 035 $a(MiAaPQ)EBC5973775 035 $z(PPN)258846798 035 $a(PPN)241944503 035 $a(EXLCZ)994100000009758997 100 $a20191105d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplex Non-Kähler Geometry $eCetraro, Italy 2018 /$fby S?awomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky ; edited by Daniele Angella, Leandro Arosio, Eleonora Di Nezza 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XV, 242 p. 38 illus., 25 illus. in color.) 225 1 $aC.I.M.E. Foundation Subseries,$x2946-1820 ;$v2246 311 08$a3-030-25882-3 320 $aIncludes bibliographical references. 330 $aCollecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds. The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and S?awomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry. 410 0$aC.I.M.E. Foundation Subseries,$x2946-1820 ;$v2246 606 $aGeometry, Differential 606 $aFunctions of complex variables 606 $aManifolds (Mathematics) 606 $aDifferential Geometry 606 $aSeveral Complex Variables and Analytic Spaces 606 $aManifolds and Cell Complexes 615 0$aGeometry, Differential. 615 0$aFunctions of complex variables. 615 0$aManifolds (Mathematics). 615 14$aDifferential Geometry. 615 24$aSeveral Complex Variables and Analytic Spaces. 615 24$aManifolds and Cell Complexes. 676 $a516.36 676 $a516.36 700 $aDinew$b S?awomir$4aut$4http://id.loc.gov/vocabulary/relators/aut$01065353 702 $aPicard$b Sebastien$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTeleman$b Andrei$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aVerjovsky$b A.$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aAngella$b Daniele$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aArosio$b Leandro$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDi Nezza$b Eleonora$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360854803321 996 $aComplex Non-Kähler Geometry$92544819 997 $aUNINA