LEADER 00840nam0-2200289---450- 001 990009201010403321 005 20100621110533.0 010 $a92-4-256124-X 035 $a000920101 035 $aFED01000920101 035 $a(Aleph)000920101FED01 035 $a000920101 100 $a20100621d1990----km-y0itay50------ba 101 0 $afre 105 $a--------101yy 200 1 $aD'Alma-Ata à l'an 2000$eréflexions à la mi-parcours$fOrganisation mondiale de la santé 210 $aGenève$cOMS$d1990 215 $aVI, 174 p.$d24 cm 610 0 $aSanità pubblica 710 12$aOrganizzazione mondiale della sanità$0507512 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009201010403321 952 $aIG 18 B 22$bS. 483$fDMIGI 959 $aDMIGI 996 $aD'Alma-Ata à l'an 2000$9774913 997 $aUNINA LEADER 03413nam 22005175 450 001 9910360852103321 005 20200702151347.0 010 $a3-030-25358-9 024 7 $a10.1007/978-3-030-25358-5 035 $a(CKB)4100000009844962 035 $a(DE-He213)978-3-030-25358-5 035 $a(MiAaPQ)EBC5975576 035 $a(PPN)269147292 035 $a(EXLCZ)994100000009844962 100 $a20191108d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Discrete Mathematics via Logic and Proof /$fby Calvin Jongsma 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XX, 482 p. 854 illus., 5 illus. in color.) 225 1 $aUndergraduate Texts in Mathematics,$x0172-6056 311 $a3-030-25357-0 327 $aPreface -- List of Notations -- 1. Propositional Logic -- 2. First-Order Logic -- 3. Mathematical Induction and Arithmetic -- 4. Basic Set Theory and Combinatorics -- 5. Set Theory and Infinity -- 6. Functions and Equivalence Relations -- 7. Posets, Lattices, and Boolean Algebra -- 8. Topics in Graph Theory -- A. Inference Rules for PL and FOL -- Index. 330 $aThis textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology?an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics. 410 0$aUndergraduate Texts in Mathematics,$x0172-6056 606 $aDiscrete mathematics 606 $aLogic, Symbolic and mathematical 606 $aDiscrete Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29000 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 615 0$aDiscrete mathematics. 615 0$aLogic, Symbolic and mathematical. 615 14$aDiscrete Mathematics. 615 24$aMathematical Logic and Foundations. 676 $a004.0151 700 $aJongsma$b Calvin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781354 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360852103321 996 $aIntroduction to Discrete Mathematics via Logic and Proof$91732515 997 $aUNINA