LEADER 03820nam 22007215 450 001 9910360850303321 005 20251113204352.0 010 $a3-030-26856-X 024 7 $a10.1007/978-3-030-26856-5 035 $a(CKB)4100000009939684 035 $a(MiAaPQ)EBC5983820 035 $a(DE-He213)978-3-030-26856-5 035 $a(PPN)241961858 035 $a(EXLCZ)994100000009939684 100 $a20191122d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aGeometric Representation Theory and Gauge Theory $eCetraro, Italy 2018 /$fby Alexander Braverman, Michael Finkelberg, Andrei Negut, Alexei Oblomkov ; edited by Ugo Bruzzo, Antonella Grassi, Francesco Sala 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (137 pages) $cillustrations 225 1 $aC.I.M.E. Foundation Subseries,$x2946-1820 ;$v2248 311 08$a3-030-26855-1 320 $aIncludes bibliographical references. 330 $aThis book offers a review of the vibrant areas of geometric representation theory and gauge theory, which are characterized by a merging of traditional techniques in representation theory with the use of powerful tools from algebraic geometry, and with strong inputs from physics. The notes are based on lectures delivered at the CIME school "Geometric Representation Theory and Gauge Theory" held in Cetraro, Italy, in June 2018. They comprise three contributions, due to Alexander Braverman and Michael Finkelberg, Andrei Negut, and Alexei Oblomkov, respectively. Braverman and Finkelberg?s notes review the mathematical theory of the Coulomb branch of 3D N=4 quantum gauge theories. The purpose of Negut?s notes is to study moduli spaces of sheaves on a surface, as well as Hecke correspondences between them. Oblomkov's notes concern matrix factorizations and knot homology. This book will appeal to both mathematicians and theoretical physicists and will be a source of inspiration for PhD students and researchers. 410 0$aC.I.M.E. Foundation Subseries,$x2946-1820 ;$v2248 606 $aAlgebraic geometry 606 $aMathematical physics 606 $aAlgebra, Homological 606 $aElementary particles (Physics) 606 $aQuantum field theory 606 $aAlgebraic Geometry 606 $aMathematical Methods in Physics 606 $aCategory Theory, Homological Algebra 606 $aElementary Particles, Quantum Field Theory 615 0$aAlgebraic geometry. 615 0$aMathematical physics. 615 0$aAlgebra, Homological. 615 0$aElementary particles (Physics). 615 0$aQuantum field theory. 615 14$aAlgebraic Geometry. 615 24$aMathematical Methods in Physics. 615 24$aCategory Theory, Homological Algebra. 615 24$aElementary Particles, Quantum Field Theory. 676 $a516.35 676 $a516.35 700 $aBraverman$b Alexander$4aut$4http://id.loc.gov/vocabulary/relators/aut$01064209 702 $aFinkelberg$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aNegut?$b Andrei$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aOblomkov$b Alexei$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aBruzzo$b U$g(Ugo),$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGrassi$b Antonella$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSala$b Francesco$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360850303321 996 $aGeometric Representation Theory and Gauge Theory$92536872 997 $aUNINA