LEADER 03650nam 22005535 450 001 9910360848803321 005 20251113191126.0 010 $a3-030-32906-2 024 7 $a10.1007/978-3-030-32906-8 035 $a(CKB)4100000009939769 035 $a(MiAaPQ)EBC5986791 035 $a(DE-He213)978-3-030-32906-8 035 $a(PPN)248602918 035 $a(EXLCZ)994100000009939769 100 $a20191128d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAffine, Vertex and W-algebras /$fedited by Dra?en Adamovi?, Paolo Papi 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (224 pages) 225 1 $aSpringer INdAM Series,$x2281-5198 ;$v37 311 08$a3-030-32905-4 320 $aIncludes bibliographical references. 327 $a1 Dra?en Adamovi?, Victor G. Kac, Pierluigi Möseneder Frajria, Paolo Papi and Ozren Per?e, Kostant?s pair of Lie type and conformal embeddings -- 2 Dan Barbasch and Pavle Pand?i?, Twisted Dirac index and applications to characters -- 3 Katrina Barron, Nathan Vander Werf, and Jinwei Yang, The level one Zhu algebra for the Heisenberg vertex operator algebra -- 4 Marijana Butorac, Quasi-particle bases of principal subspaces of affine Lie algebras -- 5 Alessandro D?Andrea, The Poisson Lie algebra, Rumin?s complex and base change -- 6 Alberto De Sole, Classical and quantum W -algebras and applications to Hamiltonian equations -- 7 Shashank Kanade and David Ridout, NGK and HLZ: fusion for physicists and mathematicians -- 8 Antun Milas and Michael Penn and Josh Wauchope, Permutation orbifolds of rank three fermionic vertex superalgebras -- 9 Mirko Primc, Some combinatorial coincidences for standard representations of affine Lie algebras. 330 $aThis book focuses on recent developments in the theory of vertex algebras, with particular emphasis on affine vertex algebras, affine W-algebras, and W-algebras appearing in physical theories such as logarithmic conformal field theory. It is widely accepted in the mathematical community that the best way to study the representation theory of affine Kac?Moody algebras is by investigating the representation theory of the associated affine vertex and W-algebras. In this volume, this general idea can be seen at work from several points of view. Most relevant state of the art topics are covered, including fusion, relationships with finite dimensional Lie theory, permutation orbifolds, higher Zhu algebras, connections with combinatorics, and mathematical physics. The volume is based on the INdAM Workshop Affine, Vertex and W-algebras, held in Rome from 11 to 15 December 2017. It will be of interest to all researchers in the field. 410 0$aSpringer INdAM Series,$x2281-5198 ;$v37 606 $aNonassociative rings 606 $aMathematical physics 606 $aNon-associative Rings and Algebras 606 $aMathematical Physics 615 0$aNonassociative rings. 615 0$aMathematical physics. 615 14$aNon-associative Rings and Algebras. 615 24$aMathematical Physics. 676 $a512.482 676 $a512.482 702 $aAdamovi?$b Dra?en$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPapi$b Paolo$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910360848803321 996 $aAffine, Vertex and W-algebras$91668120 997 $aUNINA