LEADER 04710nam 22007335 450 001 9910357840803321 005 20200701050026.0 010 $a3-030-36033-4 024 7 $a10.1007/978-3-030-36033-7 035 $a(CKB)4100000009939733 035 $a(MiAaPQ)EBC5983799 035 $a(DE-He213)978-3-030-36033-7 035 $a(PPN)257357955 035 $a(EXLCZ)994100000009939733 100 $a20191122d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTheory of Cryptography $e17th International Conference, TCC 2019, Nuremberg, Germany, December 1?5, 2019, Proceedings, Part II /$fedited by Dennis Hofheinz, Alon Rosen 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (xiv, 578 pages) $cillustrations 225 1 $aSecurity and Cryptology ;$v11892 311 $a3-030-36032-6 327 $aSuccinct Arguments in the Quantum Random Oracle Model -- Delegating Quantum Computation in the Quantum Random Oracle Model -- Tighter proofs of CCA security in the quantum random oracle model -- Attribute Based Encryption for Deterministic Finite Automata from DLIN -- CPA-to-CCA Transformation for KDM Security -- New Approaches to Traitor Tracing with Embedded Identities -- A Unified and Composable Take on Ratcheting -- Continuously Non-Malleable Secret Sharing for General Access Structures -- Interactive Non-Malleable Codes -- Stronger Lower Bounds for Online ORAM -- Adaptively Secure Garbling Schemes for Parallel Computations -- Statistical Difference Beyond the Polarizing Regime -- Estimating Gaps in Martingales and Applications to Coin-Tossing: Constructions & Hardness -- Fully Homomorphic NIZK and NIWI Proofs -- Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND -- Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles -- Compressible FHE with Applications to PIR -- Permuted Puzzles and Cryptographic Hardness -- Linear-Size Constant-Query IOPs for Delegating Computation -- On the (In)security of Kilian-Based SNARGs -- Incrementally Verifiable Computation via Incremental PCPs. 330 $aThe two-volume set LNCS 11891 and 11892 constitutes the proceedings of the 17th International Conference on Theory of Cryptography, TCC 2019, held in Nuremberg, Germany, in December 2019. The 43 full papers presented were carefully reviewed and selected from 147 submissions. The Theory of Cryptography Conference deals with the paradigms, approaches, and techniques used to conceptualize natural cryptographic problems and provide algorithmic solutions to them and much more. 410 0$aSecurity and Cryptology ;$v11892 606 $aData encryption (Computer science) 606 $aComputer communication systems 606 $aApplication software 606 $aData structures (Computer science) 606 $aComputer security 606 $aComputers 606 $aCryptology$3https://scigraph.springernature.com/ontologies/product-market-codes/I28020 606 $aComputer Communication Networks$3https://scigraph.springernature.com/ontologies/product-market-codes/I13022 606 $aInformation Systems Applications (incl. Internet)$3https://scigraph.springernature.com/ontologies/product-market-codes/I18040 606 $aData Structures and Information Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/I15009 606 $aSystems and Data Security$3https://scigraph.springernature.com/ontologies/product-market-codes/I28060 606 $aComputing Milieux$3https://scigraph.springernature.com/ontologies/product-market-codes/I24008 615 0$aData encryption (Computer science). 615 0$aComputer communication systems. 615 0$aApplication software. 615 0$aData structures (Computer science). 615 0$aComputer security. 615 0$aComputers. 615 14$aCryptology. 615 24$aComputer Communication Networks. 615 24$aInformation Systems Applications (incl. Internet). 615 24$aData Structures and Information Theory. 615 24$aSystems and Data Security. 615 24$aComputing Milieux. 676 $a005.82 676 $a005.82 702 $aHofheinz$b Dennis$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aRosen$b Alon$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910357840803321 996 $aTheory of Cryptography$93000229 997 $aUNINA