LEADER 03900nam 22006615 450 001 9910350291003321 005 20200705132050.0 010 $a981-13-0989-2 024 7 $a10.1007/978-981-13-0989-2 035 $a(CKB)4100000009757182 035 $a(MiAaPQ)EBC5723079 035 $a(DE-He213)978-981-13-0989-2 035 $a(PPN)235228907 035 $a(EXLCZ)994100000009757182 100 $a20190304d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThermodynamics and Biophysics of Biomedical Nanosystems $eApplications and Practical Considerations /$fedited by Costas Demetzos, Natassa Pippa 205 $a1st ed. 2019. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2019. 215 $a1 online resource (XII, 475 p. 196 illus., 94 illus. in color.) 225 1 $aSeries in BioEngineering,$x2196-8861 311 $a981-13-0988-4 327 $aBasic principles of biophysics -- Basic principles of thermodynamics -- Thermal behavior of bio- and nanomaterials and nanobiosystems -- Techniques -- Biomembranes and Dental materials; biophysical and thermodynamic considerations -- The biophysical and thermodynamic fingerprint of nanosystems. -- Thermal analysis techniques and thermodynamics -- Nanothermodynamics. 330 $aThis book highlights the recent advances of thermodynamics and biophysics in drug delivery nanosystems and in biomedical nanodevices. The up-to-date book provides an in-depth knowledge of bio-inspired nanotechnological systems for pharmaceutical applications. Biophysics and thermodynamics, supported by mathematics, are the locomotive by which the drug transportation and the targeting processes will be achieved under the light of the modern pharmacotherapy. They are considered as scientific tools that promote the understanding of physicochemical and thermotropic functionality and behavior of artificial cell membranes and structures like nanoparticulate systems. Therefore, this book focusses on new aspects of biophysics and thermodynamics as important elements for evaluating biomedical nanosystems, and it correlates their physicochemical, biophysical and thermodynamical behaviour with those of a living organism. 410 0$aSeries in BioEngineering,$x2196-8861 606 $aBiomedical engineering 606 $aPharmaceutical technology 606 $aSystems biology 606 $aBiological systems 606 $aNanotechnology 606 $aNanochemistry 606 $aBiomedical Engineering and Bioengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 606 $aPharmaceutical Sciences/Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/B21010 606 $aSystems Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/P27050 606 $aNanotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/Z14000 606 $aNanochemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C33000 615 0$aBiomedical engineering. 615 0$aPharmaceutical technology. 615 0$aSystems biology. 615 0$aBiological systems. 615 0$aNanotechnology. 615 0$aNanochemistry. 615 14$aBiomedical Engineering and Bioengineering. 615 24$aPharmaceutical Sciences/Technology. 615 24$aSystems Biology. 615 24$aNanotechnology. 615 24$aNanochemistry. 676 $a610.28 702 $aDemetzos$b Costas$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPippa$b Natassa$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910350291003321 996 $aThermodynamics and Biophysics of Biomedical Nanosystems$92228297 997 $aUNINA