LEADER 04079nam 22006495 450 001 9910349504203321 005 20200706174640.0 010 $a3-030-30813-8 024 7 $a10.1007/978-3-030-30813-1 035 $a(CKB)4100000009606249 035 $a(MiAaPQ)EBC5963181 035 $a(DE-He213)978-3-030-30813-1 035 $a(PPN)258304731 035 $a(EXLCZ)994100000009606249 100 $a20191018d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy /$fby Jean Spièce 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (xix, 153 pages) $cillustrations 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 $a3-030-30812-X 327 $aOutline and motivations -- Background Review -- SThM Experimental Models and Setups for Exploring Nanoscale Heat Transport -- Quantitative Thermal Transport Measurements in Nanostructures -- Three Dimensional Mapping of Thermal Properties -- Nanoscale Thermal Transport in Low Dimensional Materials -- Thermoelectric Phenomena in Graphene Constrictions -- Conclusion and Perspectives -- Appendices. 330 $aThe thesis tackles one of the most difficult problems of modern nanoscale science and technology - exploring what governs thermal phenomena at the nanoscale, how to measure the temperatures in devices just a few atoms across, and how to manage heat transport on these length scales. Nanoscale heat generated in microprocessor components of only a few tens of nanometres across cannot be effectively fed away, thus stalling the famous Moore's law of increasing computer speed, valid now for more than a decade. In this thesis, Jean Spièce develops a novel comprehensive experimental and analytical framework for high precision measurement of heat flows at the nanoscale using advanced scanning thermal microscopy (SThM) operating in ambient and vacuum environment, and reports the world?s first operation of cryogenic SThM. He applies the methodology described in the thesis to novel carbon-nanotube-based effective heat conductors, uncovers new phenomena of thermal transport in two- dimensional (2D) materials such as graphene and boron nitride, thereby discovering an entirely new paradigm of thermoelectric cooling and energy production using geometrical modification of 2D materials. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aSurfaces (Physics) 606 $aInterfaces (Physical sciences) 606 $aThin films 606 $aNanotechnology 606 $aElectronic circuits 606 $aSurface and Interface Science, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/P25160 606 $aNanotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/Z14000 606 $aElectronic Circuits and Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31010 606 $aNanotechnology and Microengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T18000 615 0$aSurfaces (Physics). 615 0$aInterfaces (Physical sciences). 615 0$aThin films. 615 0$aNanotechnology. 615 0$aElectronic circuits. 615 14$aSurface and Interface Science, Thin Films. 615 24$aNanotechnology. 615 24$aElectronic Circuits and Devices. 615 24$aNanotechnology and Microengineering. 676 $a621.4022 676 $a536.2 700 $aSpièce$b Jean$4aut$4http://id.loc.gov/vocabulary/relators/aut$01059706 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349504203321 996 $aQuantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy$92507711 997 $aUNINA