LEADER 00972nam0-22003131i-450- 001 990001020930403321 005 20040519122246.0 035 $a000102093 035 $aFED01000102093 035 $a(Aleph)000102093FED01 035 $a000102093 100 $a20020001d--------km-y0itay50------ba 101 0 $aeng 200 1 $aStatistical Physics$fby L.D. Landau and E. M. Lifshitz$gtranslated from the russian by E. Pierls amd R.F. Peierls 210 $aLondon [etc.]$cPergamon Press$d1958 225 1 $aCourse of theoretical physics$v5 610 0 $aMeccanica statistica 676 $a530.13 700 1$aLandau,$bLev Davidovich$f<1908-1968>$040436 702 1$aLifsic,$bEvgenij Mihailovic$f<1915-1985> 702 1$aPeierls,$bE. 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001020930403321 952 $a21-008F$b788$fFI1 952 $a21-008.003F$b14016$fFI1 959 $aFI1 996 $aStatistical Physics$9119190 997 $aUNINA LEADER 03589nam 22006972 450 001 9910789713203321 005 20151005020621.0 010 $a1-107-22687-2 010 $a1-139-17969-1 010 $a1-283-38399-3 010 $a9786613383990 010 $a1-139-18942-5 010 $a1-139-18812-7 010 $a1-139-19072-5 010 $a1-139-18350-8 010 $a1-139-18581-0 010 $a0-511-76013-2 035 $a(CKB)2670000000131817 035 $a(EBL)807316 035 $a(OCoLC)782877041 035 $a(SSID)ssj0000570308 035 $a(PQKBManifestationID)11354105 035 $a(PQKBTitleCode)TC0000570308 035 $a(PQKBWorkID)10587536 035 $a(PQKB)11516584 035 $a(UkCbUP)CR9780511760136 035 $a(Au-PeEL)EBL807316 035 $a(CaPaEBR)ebr10521007 035 $a(CaONFJC)MIL338399 035 $a(MiAaPQ)EBC807316 035 $a(PPN)261305360 035 $a(EXLCZ)992670000000131817 100 $a20100504d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAddiction neuroethics $ethe promises and perils of neuroscience research on addiction /$fAdrian Carter and Wayne Hall$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xxiii, 340 pages) $cdigital, PDF file(s) 225 1 $aInternational research monographs in the addictions 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-00324-5 320 $aIncludes bibliographical references and index. 327 $apt. 1. The science of addiction -- pt. 2. The ethical and philosophical implications of neuroscientific knowledge of addiction -- pt. 3. The ethical and public policy implications of novel technologies for the treatment of addiction -- pt. 4. The future of addiction research and policy. 330 $aAddiction is a significant health and social problem and one of the largest preventable causes of disease globally. Neuroscience promises to revolutionise our ability to treat addiction, lead to recognition of addiction as a 'real' disorder in need of medical treatment and thereby reduce stigma and discrimination. However, neuroscience raises numerous social and ethical challenges: ? If addicted individuals are suffering from a brain disease that drives them to drug use, should we mandate treatment? ? Does addiction impair an individual's ability to consent to research or treatment? ? How will neuroscience affect social policies towards drug use? Addiction Neuroethics addresses these challenges by examining ethical implications of emerging neurobiological treatments, including: novel psychopharmacology, neurosurgery, drug vaccines to prevent relapse, and genetic screening to identify individuals who are vulnerable to addiction. Essential reading for academics, clinicians, researchers and policy-makers in the fields of addiction, mental health and public policy. 410 0$aInternational research monographs in the addictions. 606 $aDrug addiction 606 $aNeurosciences$xMoral and ethical aspects 615 0$aDrug addiction. 615 0$aNeurosciences$xMoral and ethical aspects. 676 $a174.2/8 700 $aCarter$b Adrian$01492165 702 $aHall$b Wayne$f1951- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910789713203321 996 $aAddiction neuroethics$93714483 997 $aUNINA LEADER 08114nam 22006735 450 001 9910349501303321 005 20251116220158.0 010 $a9783030258467 010 $a3030258467 024 7 $a10.1007/978-3-030-25846-7 035 $a(CKB)4100000009362514 035 $a(DE-He213)978-3-030-25846-7 035 $a(MiAaPQ)EBC5922390 035 $a(PPN)269147667 035 $a(MiAaPQ)EBC31850086 035 $a(Au-PeEL)EBL31850086 035 $a(EXLCZ)994100000009362514 100 $a20190923d2019 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aClassical Newtonian Gravity $eA Comprehensive Introduction, with Examples and Exercises /$fby Roberto A. Capuzzo Dolcetta 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XVI, 176 p. 34 illus., 3 illus. in color.) 225 1 $aUNITEXT for Physics,$x2198-7882 311 08$a9783030258450 311 08$a3030258459 327 $aChapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ? -- 1.5.1 ? in Polar Coordinates -- 1.5.2 ? in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ? -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton?s Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace'sChapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ? -- 1.5.1 ? in Polar Coordinates -- 1.5.2 ? in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ? -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton?s Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace's Equation -- 4.2 Harmonic Functions -- 4.3 Legendre's Polynomials -- 4.4 Recursive Relations -- 4.4.1 First Recursive Relation -- 4.4.2 Second Recursive Relation -- 4.5 Legendre Differential Equation -- 4.6 Orthogonality of Legendre's Polynomials -- 4.7 Development in Series of Legendre's Polynomials -- 4.8 Rodrigues Formula Chapter 5 -- Harmonic and Homogeneous Polynomials -- 5.1 Spherical Harmonics -- 5.2 Solution of the Differential equations for Sm(?, ?) -- 5.3 The Solution in ? -- 5.4 A note on the Associated Legendre Differential Equation -- 5.5 Zonal, Sectorial and Tesseral Spherical Harmonics -- 5.5.1Orthogonality Properties -- Chapter 6 -- Series of Spherical Harmonics -- 6.1 Potential Developments Out of a Mass Distribution -- 6.2 The External Earth Potential -- 6.3 Exercises. 330 $aThis textbook offers a readily comprehensible introduction to classical Newtonian gravitation, which is fundamental for an understanding of classical mechanics and is particularly relevant to Astrophysics. The opening chapter recalls essential elements of vectorial calculus, especially to provide the formalism used in subsequent chapters. In chapter two Classical Newtonian gravity theory for one point mass and for a generic number N of point masses is then presented and discussed. The theory for point masses is naturally extended to the continuous case. The third chapter addresses the paradigmatic case of spherical symmetry in the mass density distribution (central force), with introduction of the useful tool of qualitative treatment of motion. Subsequent chapters discuss the general case of non-symmetric mass density distribution and develop classical potential theory, with elements of harmonic theory, which is essential to understand the potential development in series of the gravitational potential, the subject of the fourth chapter. Finally, in the last chapter the specific case of motion of a satellite around the earth is considered. Examples and exercises are presented throughout the book to clarify aspects of the theory. The book is aimed at those who wish to progress further beyond an initial bachelor degree, onward to a master degree, and a PhD. It is also a valuable resource for postgraduates and active researchers in the field. 410 0$aUNITEXT for Physics,$x2198-7882 606 $aMechanics 606 $aSpace sciences 606 $aPotential theory (Mathematics) 606 $aGravitation 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 606 $aSpace Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)$3https://scigraph.springernature.com/ontologies/product-market-codes/P22030 606 $aPotential Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12163 606 $aClassical and Quantum Gravitation, Relativity Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19070 615 0$aMechanics. 615 0$aSpace sciences. 615 0$aPotential theory (Mathematics) 615 0$aGravitation. 615 14$aClassical Mechanics. 615 24$aSpace Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics). 615 24$aPotential Theory. 615 24$aClassical and Quantum Gravitation, Relativity Theory. 676 $a530.092 676 $a526.7 700 $aCapuzzo-Dolcetta$b Roberto$4aut$4http://id.loc.gov/vocabulary/relators/aut$01776487 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349501303321 996 $aClassical Newtonian Gravity$94294481 997 $aUNINA