LEADER 03273nam 22005415 450 001 9910349474203321 005 20200701214127.0 010 $a981-13-1159-5 010 $a9789811311598 024 7 $a10.1007/978-981-13-1159-8 035 $a(CKB)4100000008876557 035 $a(MiAaPQ)EBC5510063 035 $a(DE-He213)978-981-13-1159-8 035 $a(PPN)230536085 035 $a(EXLCZ)994100000008876557 100 $a20180906d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aErdélyi?Kober Fractional Calculus $eFrom a Statistical Perspective, Inspired by Solar Neutrino Physics /$fby A. M. Mathai, H. J. Haubold 205 $a1st ed. 2018. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2018. 215 $a1 online resource (XII, 122 p. 6 illus., 3 illus. in color.) 225 1 $aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v31 311 $a981-13-1158-7 330 $aThis book focuses on Erdélyi?Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdélyi?Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics. A major mathematical objective of this book is specifically to examine a new de?nition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a de?nition for the case of real-valued scalar functions of several matrices. 410 0$aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v31 606 $aMathematical physics 606 $aSpecial functions 606 $aFunctional analysis 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aSpecial Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aMathematical physics. 615 0$aSpecial functions. 615 0$aFunctional analysis. 615 14$aMathematical Physics. 615 24$aSpecial Functions. 615 24$aFunctional Analysis. 676 $a530.15 700 $aMathai$b A. M$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441283 702 $aHaubold$b H. J$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910349474203321 996 $aErdélyi?Kober Fractional Calculus$92129310 997 $aUNINA