LEADER 02024nam0 2200361 i 450 001 SUN0053530 005 20180417094410.763 010 $a978-08-247-8067-8$d0.00 100 $a20060927d1989 |0engc50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $a*Stability analysis of nonlinear systems$fV. Lakshmikantham, S. Leela, A. A. Martynyuk 210 $aNew York$cDekker$d1989 215 $aIX, 315 p.$d24 cm. 410 1$1001SUN0049155$12001 $aMonographs and textbooks in pure and applied mathematics$v125$1210 $aNew York$cDekker. 606 $a34-XX$xOrdinary differential equations [MSC 2020]$2MF$3SUNC021251 606 $a34A12$xInitial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations [MSC 2020]$2MF$3SUNC022732 606 $a34D20$xStability of solutions to ordinary differential equation [MSC 2020]$2MF$3SUNC022916 606 $a34D15$xSingular perturbations of ordinary differential equation [MSC 2020]$2MF$3SUNC023327 606 $a34A34$xNonlinear ordinary differential equations and systems, general theory [MSC 2020]$2MF$3SUNC024338 620 $aUS$dNew York$3SUNL000011 700 1$aLakshmikantham$b, Vangipuram$f1924-2012$3SUNV042226$0269023 701 1$aLeela$b, Srinivasa$3SUNV042232$012683 701 1$aMartynyuk$b, Anatolii Andreevich$3SUNV042234$0726164 712 $aDekker$3SUNV000307$4650 790 1$aLakshmikantham, V.$zLakshmikantham, Vangipuram <1924-2012>$3SUNV042235 801 $aIT$bSOL$c20201019$gRICA 856 4 $uhttps://books.google.it/books?id=te210_Z7mzcC&pg=PA218&dq=9780824780678&hl=it&sa=X&ved=0ahUKEwjevcLq58DaAhVMchQKHao2DPkQuwUILjAA#v=onepage&q=9780824780678&f=false 912 $aSUN0053530 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 34-XX 2336 $e08 2157 III 20060927 996 $aStability analysis of nonlinear systems$91426974 997 $aUNICAMPANIA LEADER 05882 am 22009013u 450 001 9910349351603321 005 20200705030210.0 010 $a3-030-02895-X 024 7 $a10.1007/978-3-030-02895-4 035 $a(CKB)4100000008618233 035 $a(DE-He213)978-3-030-02895-4 035 $a(MiAaPQ)EBC5929163 035 $a(Au-PeEL)EBL5929163 035 $a(OCoLC)1132426568 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/37917 035 $a(PPN)237879492 035 $a(EXLCZ)994100000008618233 100 $a20190702d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHardy Inequalities on Homogeneous Groups$b[electronic resource] $e100 Years of Hardy Inequalities /$fby Michael Ruzhansky, Durvudkhan Suragan 205 $a1st ed. 2019. 210 $aCham$cSpringer Nature$d2019 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2019. 215 $a1 online resource (XVI, 571 p. 1 illus.) 225 1 $aProgress in Mathematics,$x0743-1643 ;$v327 311 $a3-030-02894-1 327 $aIntroduction -- Analysis on Homogeneous Groups -- Hardy Inequalities on Homogeneous Groups -- Rellich, Caarelli-Kohn-Nirenberg, and Sobolev Type Inequalities -- Fractional Hardy Inequalities -- Integral Hardy Inequalities on Homogeneous Groups -- Horizontal Inequalities on Stratied Groups -- Hardy-Rellich Inequalities and Fundamental Solutions -- Geometric Hardy Inequalities on Stratied Groups -- Uncertainty Relations on Homogeneous Groups -- Function Spaces on Homogeneous Groups -- Elements of Potential Theory on Stratified Groups -- Hardy and Rellich Inequalities for Sums of Squares -- Bibliography -- Index. 330 $aThis open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding. 410 0$aProgress in Mathematics,$x0743-1643 ;$v327 606 $aTopological groups 606 $aLie groups 606 $aPotential theory (Mathematics) 606 $aPartial differential equations 606 $aHarmonic analysis 606 $aFunctional analysis 606 $aDifferential geometry 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aPotential Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12163 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 610 $aMathematics 610 $aTopological groups 610 $aLie groups 610 $aPotential theory (Mathematics) 610 $aPartial differential equations 610 $aHarmonic analysis 610 $aFunctional analysis 610 $aDifferential geometry 615 0$aTopological groups. 615 0$aLie groups. 615 0$aPotential theory (Mathematics). 615 0$aPartial differential equations. 615 0$aHarmonic analysis. 615 0$aFunctional analysis. 615 0$aDifferential geometry. 615 14$aTopological Groups, Lie Groups. 615 24$aPotential Theory. 615 24$aPartial Differential Equations. 615 24$aAbstract Harmonic Analysis. 615 24$aFunctional Analysis. 615 24$aDifferential Geometry. 676 $a512.55 676 $a512.482 700 $aRuzhansky$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0950915 702 $aSuragan$b Durvudkhan$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349351603321 996 $aHardy Inequalities on Homogeneous Groups$92149820 997 $aUNINA LEADER 03941 am 2200673 n 450 001 9910416509003321 005 20160725 010 $a2-918887-29-3 024 7 $a10.4000/books.pcjb.1436 035 $a(CKB)4100000010654425 035 $a(FrMaCLE)OB-pcjb-1436 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/58649 035 $a(PPN)243313306 035 $a(EXLCZ)994100000010654425 100 $a20200319j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aLa romanisation du Samnium aux iie et ier s. av. J.-C. $eActes du Colloque International (Naples 1988) /$fCentre Jean Bérard 210 $aNaples $cPublications du Centre Jean Bérard$d2016 215 $a1 online resource (292-[11] p.) 311 $a2-903189-38-2 330 $aLes Actes de ce colloque tenu à Naples les 4-5 Novembre 1988 s'articulent en deux sections. La première, intitulée Les acquis de la recherche archéologique dans le Molise, les provinces d'Avellino et de Bénévent, contient des contributions de Gabriella D'Henry (La romanizzazione del Sannio nel II e I secolo a. C.), Stefania Capini (Venafro), Marcello Gaggiotti (La fase ellenistica di Sepino), Gianfranco de Benedittis (Monte Vairano), Werner Johannowsky (Circello, Casalbore e Flumeri nel quadro della romanizzazione dell'Irpinia), Gabriella Colucci Pescatori (Evidenze archeologiche in Irpinia), Daniela Giampaola (Benevento). La deuxième section, Modes et cadres de la romanisation. Économie, culture et société, regroupe des communications de Michael Crawford (Army and coinage in the late Republic), Rita Compatangelo (Catasti e strutture agrarie regionali del Sannio), Mireille Corbier (La transhumance entre le Samnium et l'Apulie: continuités entre l' époque républicaine et l'époque impériale), Filippo Coarelli (I Sanniti a Fregellae), Jean-Paul Morel (Artisanat, importations et romanisation dans le Samnium aux iie et ier siècles av. J.-C.), Stefania Adamo Muscettola (Appunti sulla culturafigurativa in area irpina), Sylvia Diebner (Testimonianze di arte funeraria: il Sannio nel contes to delle altre regioni dell'Italia Centrale). Une ample discussion précède les conclusions tirées par Ettore Lepore. 517 $aLa romanisation du Samnium aux iie et ier s. av. J.-C. 606 $aSamnites$xHistory$xCongresses 606 $aExcavations (Archaeology)$zItaly$zSannio$xCongresses 607 $aSannio (Italy)$xAntiquities, Roman$xCongresses 610 $aSamnium 610 $aromanisation 610 $aarchéologie 615 0$aSamnites$xHistory$xCongresses. 615 0$aExcavations (Archaeology)$xCongresses. 676 $a937/.7 700 $aAdamo Muscettola$b Stefania$01330010 701 $aCapini$b Stefania$0242113 701 $aCoarelli$b Filippo$034939 701 $aColucci Pescatori$b Gabriella$01302615 701 $aCompatangelo$b Rita$0487175 701 $aCorbier$b Mireille$0209845 701 $aCrawford$b Michael H$042734 701 $aDe Benedittis$b Gianfranco$01330011 701 $aDiebner$b Sylvia$0154783 701 $aD?Henry$b Gabriella$01330012 701 $aGaggiotti$b Marcello$037443 701 $aGiampaola$b Daniela$0153275 701 $aJohannowsky$b Werner$0185309 701 $aLepore$b Ettore$0130076 701 $aMorel$b Jean-Paul$0459405 701 $aCentre Jean Bérard$01288040 712 02$aCentre Jean Be?rard. 712 02$aItaly.$bSoprintendenza archeologica e per i beni ambientali, architettonici, artistici e storici del Molise. 712 02$aItaly.$bSoprintendenza archeologica per le province di Salerno, Avellino e Benevento. 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910416509003321 996 $aLa romanisation du Samnium aux iie et ier s. av. J.-C$93039672 997 $aUNINA