LEADER 05781nam 22005535 450 001 9910349340803321 005 20251113210658.0 010 $a3-030-26748-2 024 7 $a10.1007/978-3-030-26748-3 035 $a(CKB)4100000009152653 035 $a(MiAaPQ)EBC5887756 035 $a(DE-He213)978-3-030-26748-3 035 $a(PPN)242824471 035 $a(EXLCZ)994100000009152653 100 $a20190828d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModern Methods in Operator Theory and Harmonic Analysis $eOTHA 2018, Rostov-on-Don, Russia, April 22-27, Selected, Revised and Extended Contributions /$fedited by Alexey Karapetyants, Vladislav Kravchenko, Elijah Liflyand 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (474 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v291 311 08$a3-030-26747-4 327 $aPart I: Function Theory and Approximation Theory -- M. L. Goldman and E. Bakhtigareeva: Some General Properties of Operators in Morrey-type Spaces -- V. S. Guliyev, A. Eroglu and G. A. Abasova: Characterization of Parabolic Fractional Maximal Function and its Commutators in Orlicz Spaces -- A. Iosevich and K. Taylor: Finite Trees Inside Thin Subsets of Rd -- A. Karapetyants and J. E. Restrepo: Boundedness of Projection Operator in Generalized Holomorphic and Harmonic Spaces of Hölder Type Functions -- K.S. Kazarian: Generalized Fourier Series by the Double Trigonometric System -- E. Liflyand: Hardy Type Inequalities in the Category of Hausdorff Operators -- H. R. Malonek, I. Cação, M. I. Falcão and G. Tomaz: Harmonic Analysis and Hypercomplex Function Theory in Co-dimension One -- Y. Sawano: Paraproduct in Besov?Morrey Spaces -- Part II: Functional Analysis and Operator Theory -- E. I. Berezhno?: Analogs of the Khintchin ? Kolmogorov Inequalities in Discrete Morrey Spaces -- R. Duduchava: Mellin Convolution Equations -- D. Hasanyan, A. Kamalyan, M. Karakhanyan & I. M. Spitkovsky: Integral Operators of the L-convolution Type in the Case of a Reflectionless Potential -- Y. Krasnov: Spectral Theory for Nonlinear Operators: Quadratic Case -- A. G. Kusraev and Z. A. Kusraeva: Factorization of Order Bounded Disjointness Preserving Multilinear Operators -- D. B. Rokhlin: Robbins-Monro Conditions for Persistent Exploration Learning Strategies -- E. Shulman: On Widths of Invariant Sets -- I. G. Tsar?kov: The Distance Function and Boundedness of Diameters of the Nearest Elements -- Part III: Differential Equations and Mathematical Physics -- H. S. Aslan and M. Reissig: The Influence of Oscillations on Energy Estimates for Damped Wave Models with Time-dependent Propagation Speed and Dissipation -- A. H. Babayan and S. H. Abelyan: On a Dirichlet Problem for One Improperly Elliptic Equation -- N. Gialelis and I. G. Stratis: On the 1-dim DefocusingNLS Equation with Non-vanishing Initial Data at Infinity -- Y. E. Gliklikh: On Time-global Solutions of SDE Having Nowhere Vanishing Initial Densities -- F. A. Gómez and V. V. Kravchenko: On Transmutation Operators and Neumann Series of Bessel Functions Representations for Solutions of Linear Higher Order Differential Equations -- H.M. Hayrapetyan: On a Boundary Value Problem with Infinite Index -- O. Kudryavtsev and V. Rodochenko: A Numerical Realization of the Wiener-Hopf Method for the Kolmogorov Backward Equation -- A. Vatulyan and V. Yurov: On Waves Processes in Transversally-inhomogeneous Waveguides -- V. Yurko: Inverse Spectral Problems for Differential Systems. 330 $aThis proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis ? all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v291 606 $aOperator theory 606 $aFunctional analysis 606 $aDifferential equations 606 $aOperator Theory 606 $aFunctional Analysis 606 $aDifferential Equations 615 0$aOperator theory. 615 0$aFunctional analysis. 615 0$aDifferential equations. 615 14$aOperator Theory. 615 24$aFunctional Analysis. 615 24$aDifferential Equations. 676 $a515.724 702 $aKarapetyants$b Alexey$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aKravchenko$b Vladislav$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLiflyand$b Elijah$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910349340803321 996 $aModern Methods in Operator Theory and Harmonic Analysis$91732593 997 $aUNINA