LEADER 05910nam 22006975 450 001 9910349316903321 005 20250610110417.0 010 $a3-030-28972-9 024 7 $a10.1007/978-3-030-28972-0 035 $a(CKB)4100000009678453 035 $a(MiAaPQ)EBC5971200 035 $a(DE-He213)978-3-030-28972-0 035 $a(PPN)248604678 035 $a(MiAaPQ)EBC5969351 035 $a(MiAaPQ)EBC29228813 035 $a(EXLCZ)994100000009678453 100 $a20191029d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUlam Type Stability /$fedited by Janusz Brzd?k, Dorian Popa, Themistocles M. Rassias 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (515 pages) 311 08$a3-030-28971-0 320 $aIncludes bibliographical references and index. 327 $aSurvey on Cauchy functional equation in lattice environments -- A purely fixed point approach to the Ulam-Hyers stability and hyperstability of a general functional equation -- Birkhoff?James orthogonality reversing property and its stability -- Optimal forward contract design for inventory: a value-of-waiting analysis -- Ulam-Hyers stability of functional equations in quasi-b-Banach spaces -- On stability of the functional equation of p-Wright affine functions in 2-Banach spaces -- On solutions and stability of a functional equation arising from a queueing system -- Approximation by cubic mappings -- Solutions and stability of some functional equations on semigroups -- Bi-additive s-functional inequalities and quasi multipliers on Banach-algebras -- On Ulam stability of a generalization of the Fréchet functional equation on a restricted domain -- Miscellanea about the stability of functional equations -- Subdominant eigenvalue location and the robustness of Dividend Policy Irrelevance -- A fixed point theorem in uniformizable spaces -- Symmetry of Birkhoff-James orthogonality of bounded linear operators -- Ulam stability of zero point equations -- Cauchy difference operator in some Orlicz spaces -- Semi-inner products and parapreseminorms on groups and a generalization of a theorem of Maksa and Volkmann on additive functions -- Invariant means in stability theory -- On geometry of Banach function modules - selected topics -- On exact and approximate orthogonalities based on norm derivatives. 330 $aThis book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff?James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications. 606 $aDifferential equations 606 $aDifferential equations, Partial 606 $aSequences (Mathematics) 606 $aApproximation theory 606 $aTopology 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aSequences, Series, Summability$3https://scigraph.springernature.com/ontologies/product-market-codes/M1218X 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 615 0$aDifferential equations. 615 0$aDifferential equations, Partial. 615 0$aSequences (Mathematics) 615 0$aApproximation theory. 615 0$aTopology. 615 14$aOrdinary Differential Equations. 615 24$aPartial Differential Equations. 615 24$aSequences, Series, Summability. 615 24$aApproximations and Expansions. 615 24$aTopology. 676 $a515.35 702 $aBrzd?k$b Janusz$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPopa$b Dorian$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aRassias$b Themistocles M$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910349316903321 996 $aUlam Type Stability$91733811 997 $aUNINA