LEADER 06760nam 22017895 450 001 9910154753703321 005 20190708092533.0 010 $a1-4008-8159-5 024 7 $a10.1515/9781400881598 035 $a(CKB)3710000000620068 035 $a(SSID)ssj0001651280 035 $a(PQKBManifestationID)16426463 035 $a(PQKBTitleCode)TC0001651280 035 $a(PQKBWorkID)13373323 035 $a(PQKB)10652689 035 $a(MiAaPQ)EBC4738539 035 $a(DE-B1597)467982 035 $a(OCoLC)979728673 035 $a(DE-B1597)9781400881598 035 $a(EXLCZ)993710000000620068 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFunctional Integration and Partial Differential Equations. (AM-109), Volume 109 /$fMark Iosifovich Freidlin 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1985 215 $a1 online resource (557 pages) 225 0 $aAnnals of Mathematics Studies ;$v260 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08362-2 311 $a0-691-08354-1 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tCONTENTS -- $tPREFACE -- $tINTRODUCTION -- $tI. STOCHASTIC DIFFERENTIAL EQUATIONS AND RELATED TOPICS -- $tII. REPRESENTATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS AS FUNCTIONAL INTEGRALS AND THE STATEMENT OF BOUNDARY V A LU E PROBLEMS -- $tIII. BOUNDARY VALUE PROBLEMS FOR EQUATIONS WITH NON-NEGATIVE CHARACTERISTIC FORM -- $tIV. SMALL PARAMETER IN SECOND-ORDER ELLIPTIC DIFFERENTIAL EQUATIONS -- $tV. QUASI-LINEAR PARABOLIC EQUATIONS WITH NON-NEGATIVE CHARACTERISTIC FORM -- $tVI. QUASI-LINEAR PARABOLIC EQUATIONS WITH SMALL PARAMETER. WAVE FRONTS PROPAGATION -- $tVII. WAVE FRONT PROPAGATION IN PERIODIC AND RANDOM MEDIA -- $tLIST OF NOTATIONS -- $tREFERENCES -- $tBackmatter 330 $aThis book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author. 410 0$aAnnals of mathematics studies ;$vNumber 109. 606 $aDifferential equations, Partial 606 $aProbabilities 606 $aIntegration, Functional 610 $aA priori estimate. 610 $aAbsolute continuity. 610 $aAlmost surely. 610 $aAnalytic continuation. 610 $aAxiom. 610 $aBig O notation. 610 $aBoundary (topology). 610 $aBoundary value problem. 610 $aBounded function. 610 $aCalculation. 610 $aCauchy problem. 610 $aCentral limit theorem. 610 $aCharacteristic function (probability theory). 610 $aChebyshev's inequality. 610 $aCoefficient. 610 $aComparison theorem. 610 $aContinuous function (set theory). 610 $aContinuous function. 610 $aConvergence of random variables. 610 $aCylinder set. 610 $aDegeneracy (mathematics). 610 $aDerivative. 610 $aDifferential equation. 610 $aDifferential operator. 610 $aDiffusion equation. 610 $aDiffusion process. 610 $aDimension (vector space). 610 $aDirect method in the calculus of variations. 610 $aDirichlet boundary condition. 610 $aDirichlet problem. 610 $aEigenfunction. 610 $aEigenvalues and eigenvectors. 610 $aElliptic operator. 610 $aElliptic partial differential equation. 610 $aEquation. 610 $aExistence theorem. 610 $aExponential function. 610 $aFeynman?Kac formula. 610 $aFokker?Planck equation. 610 $aFunction space. 610 $aFunctional analysis. 610 $aFundamental solution. 610 $aGaussian measure. 610 $aGirsanov theorem. 610 $aHessian matrix. 610 $aHölder condition. 610 $aIndependence (probability theory). 610 $aIntegral curve. 610 $aIntegral equation. 610 $aInvariant measure. 610 $aIterated logarithm. 610 $aItô's lemma. 610 $aJoint probability distribution. 610 $aLaplace operator. 610 $aLaplace's equation. 610 $aLebesgue measure. 610 $aLimit (mathematics). 610 $aLimit cycle. 610 $aLimit point. 610 $aLinear differential equation. 610 $aLinear map. 610 $aLipschitz continuity. 610 $aMarkov chain. 610 $aMarkov process. 610 $aMarkov property. 610 $aMaximum principle. 610 $aMean value theorem. 610 $aMeasure (mathematics). 610 $aModulus of continuity. 610 $aMoment (mathematics). 610 $aMonotonic function. 610 $aNavier?Stokes equations. 610 $aNonlinear system. 610 $aOrdinary differential equation. 610 $aParameter. 610 $aPartial differential equation. 610 $aPeriodic function. 610 $aPoisson kernel. 610 $aProbabilistic method. 610 $aProbability space. 610 $aProbability theory. 610 $aProbability. 610 $aRandom function. 610 $aRegularization (mathematics). 610 $aSchrödinger equation. 610 $aSelf-adjoint operator. 610 $aSign (mathematics). 610 $aSimultaneous equations. 610 $aSmoothness. 610 $aState-space representation. 610 $aStochastic calculus. 610 $aStochastic differential equation. 610 $aStochastic. 610 $aSupport (mathematics). 610 $aTheorem. 610 $aTheory. 610 $aUniqueness theorem. 610 $aVariable (mathematics). 610 $aWeak convergence (Hilbert space). 610 $aWiener process. 615 0$aDifferential equations, Partial. 615 0$aProbabilities. 615 0$aIntegration, Functional. 676 $a515.3/53 700 $aFreidlin$b Mark Iosifovich, $0535210 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154753703321 996 $aFunctional Integration and Partial Differential Equations. (AM-109), Volume 109$92787593 997 $aUNINA LEADER 02480nam 22004933a 450 001 9910348215503321 005 20250516184257.0 010 $a9788855260947 010 $a8855260944 035 $a(CKB)4100000009763423 035 $a(OAPEN)1005799 035 $a(ScCtBLL)e7631e63-9529-44cd-8359-7e8804946179 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/27391 035 $a(Perlego)2328289 035 $a(oapen)doab27391 035 $a(EXLCZ)994100000009763423 100 $a20211214i20172019 uu 101 0 $aita 135 $auuuuu---auuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCultura come cibo$fBeatrice Barbiellini Amidei, Martino Marazzi 210 $cLedizioni - LediPublishing$d2017 210 1$a[s.l.] :$cLedizioni - LediPublishing,$d2017. 215 $a1 online resource (1 p.) 225 1 $aConsonanze 311 08$a9788867056286 311 08$a886705628X 330 $aThe theme of the contributions is the centrality of culture, referring to the Dante metaphor of the sapiential banquet and of "culture as food." The interventions intend to stimulate the start of an interdisciplinary reflection on the humanities in their sense of complex field and creative practice. Starting from different disciplines - from philosophy to literature and anthropology - and through dialogue between literati of various backgrounds, a perspective is proposed that encourages the encounter between "high" and "low" and between elite culture and folkloric culture . The arc of interest ranges from the texts of ancient Indian literature, to the Grail of Chre?tien de Troyes and to the philosophical formation offered to the public by Dante's Convivio; from the fascinating stratification of traditional knowledge in the Lunari, to the carnival folkloric practices and to the imagination of the Land of Cockaigne; and again from the use of food as belonging in the writings of Italian emigrants in America. 410 $aConsonanze 606 $aLiterary studies: general$2bicssc 610 $aLiterary Criticism 610 $aGeneral 615 7$aLiterary studies: general 700 $aAmidei$b Beatrice Barbiellini$4edt$01780849 702 $aAmidei$b Beatrice Barbiellini 702 $aMarazzi$b Martino 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910348215503321 996 $aCultura come cibo$94305446 997 $aUNINA