LEADER 01690nam 2200409z- 450 001 9910347054403321 005 20210212 010 $a1000038927 035 $a(CKB)4920000000101972 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/61886 035 $a(oapen)doab61886 035 $a(EXLCZ)994920000000101972 100 $a20202102d2013 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aVeech Groups and Translation Coverings 210 $cKIT Scientific Publishing$d2013 215 $a1 online resource (X, 136 p. p.) 311 08$a3-7315-0180-5 330 $aA translation surface is obtained by taking plane polygons and gluing their edges by translations. We ask which subgroups of the Veech group of a primitive translation surface can be realised via a translation covering. For many primitive surfaces we prove that partition stabilising congruence subgroups are the Veech group of a covering surface. We also address the coverings via their monodromy groups and present examples of cyclic coverings in short orbits, i.e. with large Veech groups. 610 $acongruence subgroup 610 $acyclic covering 610 $aKongruenzgruppe 610 $aMonodromiegruppe 610 $amonodromy group 610 $atranslation coveringVeechgruppe 610 $aTranslationsu?berlagerung 610 $aVeech group 610 $azyklische U?berlagerung 700 $aFinster$b Myriam$4auth$01328628 906 $aBOOK 912 $a9910347054403321 996 $aVeech Groups and Translation Coverings$93038747 997 $aUNINA