LEADER 01619nam 2200409z- 450 001 9910347045503321 005 20210211 010 $a1000045101 035 $a(CKB)4920000000102061 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/53298 035 $a(oapen)doab53298 035 $a(EXLCZ)994920000000102061 100 $a20202102d2015 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aThe method of densities for non-isotropic Boolean models 210 $cKIT Scientific Publishing$d2015 215 $a1 online resource (122 p. p.) 311 08$a3-7315-0329-8 330 $aThis book deals with the Boolean model, a basic model of stochastic geometry for the description of porous structures like the pore space in sand stone. The main result is a formula which gives in two and three dimensions a series representation of the most important model parameter, the intensity, using densities of so-called harmonic intrinsic volumes, which are new observable geometric quantities. 610 $aAnisotropie 610 $aanisotropy 610 $aBoolean model 610 $aBoolesches Modell 610 $aIntensita?tsscha?tzung 610 $aintensity estimation 610 $amethod of densities 610 $aStochastic geometry 610 $aStochastische Geometrie 700 $aHörrmann$b Julia$4auth$01299257 906 $aBOOK 912 $a9910347045503321 996 $aThe method of densities for non-isotropic Boolean models$93025079 997 $aUNINA