LEADER 01786nam 2200373z- 450 001 9910346953203321 005 20210212 010 $a1000083168 035 $a(CKB)4920000000100990 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/62070 035 $a(oapen)doab62070 035 $a(EXLCZ)994920000000100990 100 $a20202102d2018 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aVideo-to-Video Face Recognition for Low-Quality Surveillance Data 210 $cKIT Scientific Publishing$d2018 215 $a1 online resource (IX, 153 p. p.) 225 1 $aKarlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 311 08$a3-7315-0799-4 330 $aThe availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face search. Novel concepts for multi-scale analysis, dataset augmentation, CNN loss function, and sequence description lead to improvements over state-of-the-art methods on surveillance video footage. 610 $aface 610 $aGesichtswiederkennung 610 $arecognition 610 $avideo 610 $aVideoverarbeitung 700 $aHerrmann$b Christian$4auth$0315734 906 $aBOOK 912 $a9910346953203321 996 $aVideo-to-Video Face Recognition for Low-Quality Surveillance Data$93023514 997 $aUNINA