LEADER 01733nam 2200385z- 450 001 9910346945203321 005 20231214133147.0 010 $a1000005304 035 $a(CKB)4920000000101070 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54912 035 $a(EXLCZ)994920000000101070 100 $a20202102d2006 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical analysis of Lattice Boltzmann Methods for the heat equation on a bounded interval 210 $cKIT Scientific Publishing$d2006 215 $a1 electronic resource (VII, 190 p. p.) 311 $a3-86644-069-3 330 $aLattice Boltzmann methods are a promising approach for the numerical solution of fluid-dynamic problems. We consider the one-dimensional Goldstein-Taylor model with the aim to answer some of the questions concerning the numerical analysis of lattice Boltzmann schemes. Discretizations for the solution of the heat equation are presented for a selection of boundary conditions. Stability and convergence of the solutions are proved by employing energy estimates and explicit Fourier representations. 610 $aCFD 610 $aKonvergenz 610 $aLattice-Boltzmann 610 $aNumerische Strömungssimulation 610 $aGitter-Boltzmann-Methode 610 $aWärmeleitungsgleichung 610 $aHeat Equation 610 $aConvergence 700 $aWeiß$b Jan-Philipp$4auth$01331389 906 $aBOOK 912 $a9910346945203321 996 $aNumerical analysis of Lattice Boltzmann Methods for the heat equation on a bounded interval$93040355 997 $aUNINA