LEADER 01658nam 2200349z- 450 001 9910346924403321 005 20210211 010 $a1000011485 035 $a(CKB)4920000000101278 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54761 035 $a(oapen)doab54761 035 $a(EXLCZ)994920000000101278 100 $a20202102d2009 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aNonlinear state and parameter estimation of spatially distributed systems 210 $cKIT Scientific Publishing$d2009 215 $a1 online resource (XI, 153 p. p.) 225 1 $aKarlsruhe Series on Intelligent Sensor-Actuator-Systems, Universität Karlsruhe / Intelligent Sensor-Actuator-Systems Laboratory 311 08$a3-86644-370-6 330 $aIn this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion. 610 $adistributed-parameter system 610 $anonlinear estimation 610 $asensor network 700 $aSawo$b Felix$4auth$01328622 906 $aBOOK 912 $a9910346924403321 996 $aNonlinear state and parameter estimation of spatially distributed systems$93038739 997 $aUNINA