LEADER 01690nam 2200373z- 450 001 9910346922203321 005 20210211 010 $a1000012224 035 $a(CKB)4920000000101300 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/57004 035 $a(oapen)doab57004 035 $a(EXLCZ)994920000000101300 100 $a20202102d2009 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProbabilistic Framework for Sensor Management 210 $cKIT Scientific Publishing$d2009 215 $a1 online resource (VI, 159 p. p.) 225 1 $aKarlsruhe Series on Intelligent Sensor-Actuator-Systems / Universität Karlsruhe, Intelligent Sensor-Actuator-Systems Laboratory 311 08$a3-86644-405-2 330 $aA probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions. 610 $aBayesian estimation 610 $adecision theory 610 $aGaussian mixtures 610 $ainformation theory 610 $asensor management 700 $aHuber$b Marco$4auth$01302254 906 $aBOOK 912 $a9910346922203321 996 $aProbabilistic Framework for Sensor Management$93026305 997 $aUNINA