LEADER 00900cam2-2200325---450- 001 990004368030403321 005 20140424093539.0 010 $a0-404-08776-0 035 $a000436803 035 $aFED01000436803 035 $a(Aleph)000436803FED01 035 $a000436803 100 $a19990604d1974----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $a--------001zy 200 1 $a<<26.: >>Miscellanea$fby Robert Louis tevenson 205 $aRepr. 210 $aNew York$cScribner$d1974 215 $a527 p.$d18 cm 461 0$1001000985181$a<>works of Robert Louis Stevenson$v24 676 $a828.8 700 1$aStevenson,$bRobert Louis$f<1850-1894>$07383 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004368030403321 952 $a823.8 STEV 1(1;26)$bBibl.57819$fFLFBC 959 $aFLFBC 996 $aMiscellanea$9541089 997 $aUNINA LEADER 01566nam 2200361z- 450 001 9910346917203321 005 20210211 010 $a1000015949 035 $a(CKB)4920000000101350 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/50617 035 $a(oapen)doab50617 035 $a(EXLCZ)994920000000101350 100 $a20202102d2010 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aInvariants of complex and p-adic origami-curves 210 $cKIT Scientific Publishing$d2010 215 $a1 online resource (VI, 74 p. p.) 311 08$a3-86644-482-6 330 $aOrigamis (also known as square-tiled surfaces) are Riemann surfaces which are constructed by glueing together finitely many unit squares. By varying the complex structure of these squares one obtains easily accessible examples of Teichmu?ller curves in the moduli space of Riemann surfaces.Different Teichmu?ller curves can be distinguished by several invariants, which are explicitly computed. The results are then compared to a p-adic analogue where Riemann surfaces are replaced by Mumford curves. 610 $amoduli space 610 $aMumford curves 610 $ap-adic Schottky groups 610 $aTeichmu?ller curves 610 $atranslation surfaces 700 $aKremer$b Karsten$4auth$01294126 906 $aBOOK 912 $a9910346917203321 996 $aInvariants of complex and p-adic origami-curves$93022902 997 $aUNINA