LEADER 01584nam 2200361z- 450 001 9910346905303321 005 20210211 010 $a1000022561 035 $a(CKB)4920000000101469 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/55591 035 $a(oapen)doab55591 035 $a(EXLCZ)994920000000101469 100 $a20202102d2011 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPalm theory, mass transports and ergodic theory for group-stationary processes 210 $cKIT Scientific Publishing$d2011 215 $a1 online resource (IV , 145 p. p.) 311 08$a3-86644-669-1 330 $aThis work is about random measures stationary with respect to a possibly non-transitive group action. It contains chapters on Palm Theory, the Mass-Transport Principle and Ergodic Theory for such random measures. The thesis ends with discussions of several new models in Stochastic Geometry (Cox Delauney mosaics, isometry stationary random partitions on Riemannian manifolds). These make crucial use of the previously developed techniques and objects. 610 $aergodic theory 610 $amass-transport principle 610 $aPalm theory 610 $aRandom measure 610 $aStochastic Geometry 700 $aGentner$b Daniel Sebastian$4auth$01294119 906 $aBOOK 912 $a9910346905303321 996 $aPalm theory, mass transports and ergodic theory for group-stationary processes$93022895 997 $aUNINA