LEADER 01792nam 2200373z- 450 001 9910346889403321 005 20210211 010 $a1000031356 035 $a(CKB)4920000000101628 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/51483 035 $a(oapen)doab51483 035 $a(EXLCZ)994920000000101628 100 $a20202102d2013 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLearning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation 210 $cKIT Scientific Publishing$d2013 215 $a1 online resource (XIV, 210 p. p.) 225 1 $aKarlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory 311 08$a3-86644-952-6 330 $aThis thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference. 610 $a(Conditional) Density Estimation 610 $aDynamic Systems 610 $aHuman-Robot-Cooperation 610 $aIntention Recognition 610 $aRegularization 700 $aKrauthausen$b Peter$4auth$01305984 906 $aBOOK 912 $a9910346889403321 996 $aLearning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation$93028101 997 $aUNINA