LEADER 05173nam 2201465z- 450 001 9910346880203321 005 20231214132817.0 010 $a3-03921-027-0 035 $a(CKB)4920000000101718 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/58813 035 $a(EXLCZ)994920000000101718 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSalinity Tolerance in Plants 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 electronic resource (422 p.) 311 $a3-03921-026-2 330 $aSalt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants. 610 $asoluble nutrients 610 $atranscription factor 610 $aCDPK 610 $asalicylic acid 610 $aantioxidant enzymes 610 $alight saturation point 610 $aphytohormone 610 $aion homeostasis 610 $aantioxidant systems 610 $aphotosynthesis 610 $aChlamydomonas reinhardtii 610 $ahigh salinity 610 $anitric oxide 610 $apoplars (Populus) 610 $aroot activity 610 $aabiotic stresses 610 $atranscriptional activator 610 $agermination 610 $aABA 610 $atranscriptome 610 $amandelonitrile 610 $aredox homeostasis 610 $aassociation mapping. 610 $aredox signalling 610 $aosmotic stress 610 $aflax 610 $astrigolactones 610 $asalt tolerance 610 $anucleolin 610 $aCaDHN5 610 $aphotosystem 610 $aEST-SSR 610 $aNMT 610 $aSapium sebiferum 610 $aGossypium arboretum 610 $aSOS 610 $aBrassica napus 610 $aSnRK2 610 $aHKT1 610 $agrapevine 610 $atranscription factors 610 $acucumber 610 $aunderpinnings of salt stress responses 610 $aabiotic stress 610 $aArabidopsis thaliana 610 $aRNA-seq 610 $ahalophytes 610 $asingle nucleotide polymorphisms 610 $adehydrin 610 $aJ8-1 plum line 610 $achlorophyll fluorescence 610 $anatural variation 610 $ahydrogen peroxide 610 $asalt stress 610 $alipid peroxidation 610 $aROS detoxification 610 $aROP 610 $amolecular mechanisms 610 $acell membrane injury 610 $abooting stage 610 $aascorbate cycle 610 $abanana (Musa acuminata L.) 610 $aiTRAQ quantification 610 $aROS 610 $aNa+ 610 $aCapsicum annuum L. 610 $abZIP transcription factors 610 $amultiple bioactive constituents 610 $aNaCl stress 610 $aphysiological changes 610 $aVOZ 610 $atranscriptional regulation 610 $agenome-wide identification 610 $aApocyni Veneti Folium 610 $aimpairment of photosynthesis 610 $asalt-stress 610 $aOryza sativa 610 $areactive oxygen species 610 $alipid accumulation 610 $apolyamines 610 $amultivariate statistical analysis 610 $aDEUs 610 $asalinity 610 $aTGase 610 $aSalt stress 610 $aPrunus domestica 610 $aproteomics 610 $aArabidopsis 610 $aRNA binding protein 610 $arice 610 $aglycophytes 610 $aSsMAX2 610 $adrought 610 $agenome-wide association study 610 $atranscriptome analysis 610 $asignal pathway 610 $amelatonin 610 $aMaROP5g 700 $aAntonio Herna?ndez Corte?s$b Jose$4auth$01301446 906 $aBOOK 912 $a9910346880203321 996 $aSalinity Tolerance in Plants$93025858 997 $aUNINA