LEADER 04726nam 22012853a 450 001 9910346854403321 005 20250203235435.0 010 $a9783038978978 010 $a3038978973 024 8 $a10.3390/books978-3-03897-897-8 035 $a(CKB)4920000000095123 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/53542 035 $a(ScCtBLL)37a58e3e-d4e2-4b5d-8f50-a60962206054 035 $a(OCoLC)1117848626 035 $a(oapen)doab53542 035 $a(EXLCZ)994920000000095123 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aMineral Surface Reactions at the Nanoscale$fChristine V. Putnis 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (220 p.) 311 08$a9783038978961 311 08$a3038978965 330 $aReactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral-aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral-fluid reactions. In this Special Issue, "Mineral Surface Reactions at the Nanoscale", we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research. 606 $aEarth sciences, geography, environment, planning$2bicssc 610 $ametadynamics 610 $aminerals 610 $amicrostructure 610 $adissolution-reprecipitation 610 $astabilization 610 $aalbite 610 $amineral-water interface 610 $asimulation 610 $akrennerite 610 $amineralogy 610 $amineral replacement 610 $acalcite 610 $apyrite 610 $adissolution-precipitation 610 $agoethite 610 $arecrystallization 610 $agold-(silver) tellurides 610 $aisotopes 610 $anon-classical nucleation 610 $acalaverite 610 $ainterfacial precipitation 610 $atoxic metals 610 $ametasomatism 610 $aadsorption 610 $aamorphous 610 $apre-nucleation clusters 610 $asurface 610 $adissolution 610 $ahematite 610 $acyanide 610 $aMOFs 610 $aleaching 610 $aRaman spectroscopy 610 $asodalite 610 $acarbonation 610 $arate spectra 610 $aretreat velocity 610 $aadditives 610 $aliquid precursors 610 $abioaragonite 610 $abrucite 610 $akinetics 610 $are-adsorption 610 $abrushite 610 $apolymorphs 610 $adissolution-precipitation 610 $ahydrothermal experiments 610 $aapatite 610 $aferrihydrite 610 $amesocrystals 610 $acatalysts 610 $acarbonic anhydrase 610 $aXPS 610 $areplacement reaction 610 $amineral growth 610 $acarbon capture and storage 610 $ainterfaces 610 $acitrate 610 $aclassical nucleation theory 610 $aREEs 610 $aphosphate 610 $awollastonite 610 $apolarization microscopy 610 $anatural porous gold 610 $asylvanite 610 $aanalcime 610 $acalcium phosphate 610 $aFe atom exchange 610 $anepheline 610 $abiomineralisation 610 $ainterface-coupled dissolution-reprecipitation 610 $ahydrothermal method 615 7$aEarth sciences, geography, environment, planning 700 $aPutnis$b Christine V$01332970 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346854403321 996 $aMineral Surface Reactions at the Nanoscale$93041170 997 $aUNINA