LEADER 04324nam 22010333a 450 001 9910346840003321 005 20250203235429.0 010 $a9783039210695 010 $a3039210696 024 8 $a10.3390/books978-3-03921-069-5 035 $a(CKB)4920000000095240 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/44945 035 $a(ScCtBLL)ac724d8e-b20a-4258-8bfc-177bf169be92 035 $a(OCoLC)1126113289 035 $a(oapen)doab44945 035 $a(EXLCZ)994920000000095240 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDevelopment of CMOS-MEMS/NEMS Devices$fJaume Verd, Jaume Segura 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (165 p.) 311 08$a9783039210688 311 08$a3039210688 330 $aMicro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).] 606 $aHistory of engineering and technology$2bicssc 610 $aencapsulation 610 $aNEM memory switch 610 $amagnetotransistor 610 $agas sensor 610 $anano-system array 610 $ametal oxide (MOX) sensor 610 $acapacitive pressure sensor 610 $areal-time temperature compensation loop 610 $amechanical relays 610 $asingle-crystal silicon (SC-Si) 610 $aMEMS relays 610 $aMEMS 610 $aoscillator 610 $amicro-electro-mechanical system (MEMS) 610 $auncooled IR-bolometer 610 $amicroelectromechanical systems 610 $amicrobolometer 610 $aprogrammable sustaining amplifier 610 $amicro sensor 610 $aCMOS-MEMS 610 $apierce oscillator 610 $aMEMS resonators 610 $amicro/nanoelectromechanical systems (MEMS/NEMS) 610 $aresonator 610 $amicrohotplate 610 $aNEMS 610 $aapplication-specific integrated circuit (ASIC) 610 $aMEMS modelling 610 $amagnetic field 610 $achopper instrumentation amplifier 610 $amicroresonators 610 $ainterface circuit 610 $aHall effect 610 $athermal detector 610 $atemperature sensor 610 $ainfrared sensor 610 $aCMOS-NEMS 610 $aCMOS 610 $aatomic force microscope 610 $aMEMS switches 610 $astent 610 $amicro-electro-mechanical systems (MEMS) sensors 610 $anano resonator 610 $asilicon-on-insulator (SOI) 610 $aMEMS-ASIC integration 610 $aSigma-Delta 610 $aMEMS characterization 610 $ahigh-Q capacitive accelerometer 610 $amass sensors 610 $aM3D 615 7$aHistory of engineering and technology 700 $aVerd$b Jaume$01287817 702 $aSegura$b Jaume 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346840003321 996 $aDevelopment of CMOS-MEMS$93020442 997 $aUNINA