LEADER 01939nam 2200409z- 450 001 9910346783603321 005 20231214133255.0 010 $a1000045491 035 $a(CKB)4920000000100687 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/54758 035 $a(EXLCZ)994920000000100687 100 $a20202102d2015 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear Gaussian Filtering : Theory, Algorithms, and Applications 210 $cKIT Scientific Publishing$d2015 215 $a1 electronic resource (V, 270 p. p.) 225 1 $aKarlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 311 $a3-7315-0338-7 330 $aBy restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems. 517 $aNonlinear Gaussian Filtering 610 $aZustandsschätzung 610 $aGaußprozesseBayesian statistics 610 $aKalman filter 610 $aGaussian processes 610 $aKalman-Filter 610 $astate estimation 610 $afiltering 610 $aBayes'sche Statistik 700 $aHuber$b Marco$4auth$01302254 906 $aBOOK 912 $a9910346783603321 996 $aNonlinear Gaussian Filtering : Theory, Algorithms, and Applications$93031361 997 $aUNINA