LEADER 01904nam 2200421z- 450 001 9910346783203321 005 20210211 010 $a1000045577 035 $a(CKB)4920000000100691 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/51747 035 $a(oapen)doab51747 035 $a(EXLCZ)994920000000100691 100 $a20202102d2015 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aLinear Estimation in Interconnected Sensor Systems with Information Constraints 210 $cKIT Scientific Publishing$d2015 215 $a1 online resource (XVII, 227 p. p.) 225 1 $aKarlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory 311 08$a3-7315-0342-5 330 $aA ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed. 610 $aDatenfusion 610 $adistributed systems 610 $aestimation theory 610 $aKalman Filter 610 $aKalman filtering 610 $aScha?tztheorie 610 $asensor networks 610 $aSensornetze 610 $aVerteilte SystemsData fusion 700 $aReinhardt$b Marc$4auth$01318463 906 $aBOOK 912 $a9910346783203321 996 $aLinear Estimation in Interconnected Sensor Systems with Information Constraints$93033287 997 $aUNINA