LEADER 02046nam 2200421z- 450 001 9910346775403321 005 20210212 010 $a1000051065 035 $a(CKB)4920000000100769 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/62761 035 $a(oapen)doab62761 035 $a(EXLCZ)994920000000100769 100 $a20202102d2016 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aWissensbasierte probabilistische Modellierung fu?r die Situationsanalyse am Beispiel der maritimen U?berwachung 210 $cKIT Scientific Publishing$d2016 215 $a1 online resource (XVI, 217 p. p.) 225 1 $aKarlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 311 08$a3-7315-0460-X 330 $aIn today's surveillance systems, a multitude of sensors are used. Thus, the data volume is clearly increasing and the human decision maker has to be supported in analyzing this data in an intelligent way. This contribution deals with the process of situation assessment, which is analyzing real-time data with respect to pre-modeled situations of interest with a dynamic Bayesian network. The quality of the recognition is evaluated with a maritime dataset. 610 $adata fusion 610 $aDatenfusion 610 $adynamic Bayesian networks 610 $adynamische Bayes'sche Netze 610 $amaritime surveillance 610 $amaritime U?berwachung 610 $asituation awareness 610 $aSituationsanalyse 610 $aSituationsbewusstseinSituation assessment 700 $aFischer$b Yvonne$4auth$0609868 906 $aBOOK 912 $a9910346775403321 996 $aWissensbasierte probabilistische Modellierung für die Situationsanalyse am Beispiel der maritimen Überwachung$93035816 997 $aUNINA