LEADER 01958nam 2200445z- 450 001 9910346772403321 005 20210211 010 $a1000053685 035 $a(CKB)4920000000100799 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/47328 035 $a(oapen)doab47328 035 $a(EXLCZ)994920000000100799 100 $a20202102d2016 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFahrerabsichtserkennung und Risikobewertung fu?r warnende Fahrerassistenzsysteme 210 $cKIT Scientific Publishing$d2016 215 $a1 online resource (XX, 159 p. p.) 225 1 $aSchriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie 311 08$a3-7315-0508-8 330 $aTo avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that - in principle - is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account. 606 $aTechnology: general issues$2bicssc 610 $aDriver Model 610 $aDynamic Bayesian Network 610 $aDynamisches Bayes'sches NetzDriver Intent Inference 610 $aFahrerabsichtserkennung 610 $aFahrerverhaltensmodell 610 $aRisikobewertung 610 $aRisk Assessment 610 $aSituation Awareness 610 $aSituationsbewusstsein 615 7$aTechnology: general issues 700 $aLiebner$b Martin$4auth$01296612 906 $aBOOK 912 $a9910346772403321 996 $aFahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme$93024131 997 $aUNINA