LEADER 01634nam 2200409z- 450 001 9910346771103321 005 20210212 010 $a1000054609 035 $a(CKB)4920000000100812 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/59441 035 $a(oapen)doab59441 035 $a(EXLCZ)994920000000100812 100 $a20202102d2016 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSituation Interpretation for Knowledge- and Model Based Laparoscopic Surgery 210 $cKIT Scientific Publishing$d2016 215 $a1 online resource (XV, 148 p. p.) 311 08$a3-7315-0527-4 330 $aTo manage the influx of information into surgical practice, new man-machine interaction methods are necessary to prevent information overflow. This work presents an approach to automatically segment surgeries into phases and select the most appropriate pieces of information for the current situation. This way, assistance systems can adopt themselves to the needs of the surgeon and not the other way around. 610 $aAssistance 610 $aAssistenz 610 $aAugmented Reality 610 $aChirurgie 610 $aErweiterte Realita?tMachine Learning 610 $aMaschinelles Lernen 610 $aOntologie 610 $aOntology 610 $aSurgery 700 $aKati?$b Darko$4auth$01314082 906 $aBOOK 912 $a9910346771103321 996 $aSituation Interpretation for Knowledge- and Model Based Laparoscopic Surgery$93031682 997 $aUNINA