LEADER 01981nam 2200433z- 450 001 9910346716803321 005 20210211 010 $a1000081665 035 $a(CKB)4920000000094533 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/49739 035 $a(oapen)doab49739 035 $a(EXLCZ)994920000000094533 100 $a20202102d2018 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHyperspectral Image Unmixing Incorporating Adjacency Information 210 $cKIT Scientific Publishing$d2018 215 $a1 online resource (XIII, 203 p. p.) 225 1 $aForschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie 311 08$a3-7315-0788-9 330 $aWhile the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials' spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results. 606 $aTechnology: general issues$2bicssc 610 $ablind source separation 610 $aBlinde Quellentrennung 610 $aHyperspectral image processing 610 $aHyperspektrale Bildverarbeitung 610 $aNichtnegative Matrixzerlegung 610 $anonnegative matrix factorization 610 $aspectral unmixing 610 $aSpektrale Entmischung 615 7$aTechnology: general issues 700 $aBauer$b Sebastian$4auth$01292408 906 $aBOOK 912 $a9910346716803321 996 $aHyperspectral Image Unmixing Incorporating Adjacency Information$93022273 997 $aUNINA