LEADER 01546nam 2200361z- 450 001 9910346708103321 005 20210211 010 $a1000030761 035 $a(CKB)4920000000094613 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/55253 035 $a(oapen)doab55253 035 $a(EXLCZ)994920000000094613 100 $a20202102d2013 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aOntology Alignment using Biologically-inspired Optimisation Algorithms 210 $cKIT Scientific Publishing$d2013 215 $a1 online resource (XIV, 220 p. p.) 311 08$a3-86644-936-4 330 $aIt is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications. 610 $aalignment 610 $acloud 610 $aevolution 610 $aontology 610 $aPSO 700 $aBock$b Jürgen$4auth$01309825 906 $aBOOK 912 $a9910346708103321 996 $aOntology Alignment using Biologically-inspired Optimisation Algorithms$93029621 997 $aUNINA