LEADER 01667nam 2200397z- 450 001 9910346706003321 005 20210211 010 $a1000039083 035 $a(CKB)4920000000094634 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/49634 035 $a(oapen)doab49634 035 $a(EXLCZ)994920000000094634 100 $a20202102d2014 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHuman Pose Estimation with Implicit Shape Models 210 $cKIT Scientific Publishing$d2014 215 $a1 online resource (XVIII, 264 p. p.) 225 1 $aSchriftenreihe Automatische Sichtprüfung und Bildverarbeitung 311 08$a3-7315-0184-8 330 $aThis work presents a new approach for estimating 3D human poses based on monocular camera information only. For this, the Implicit Shape Model is augmented by new voting strategies that allow to localize 2D anatomical landmarks in the image. The actual 3D pose estimation is then formulated as a Particle Swarm Optimization (PSO) where projected 3D pose hypotheses are compared with the generated landmark vote distributions. 610 $aaction recognition 610 $aAktionserkennungScene understanding 610 $aBildverarbeitung 610 $aComputer vision 610 $aHuman pose estimation 610 $aMenschliche Posenscha?tzung 610 $aSzenenverstehen 700 $aBrauer$b Jürgen$4auth$0480178 906 $aBOOK 912 $a9910346706003321 996 $aHuman Pose Estimation with Implicit Shape Models$93038231 997 $aUNINA