LEADER 04939nam 22013093a 450 001 9910346691003321 005 20250203235434.0 010 $a9783038971269 010 $a303897126X 024 8 $a10.3390/books978-3-03897-126-9 035 $a(CKB)4920000000094759 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/59383 035 $a(ScCtBLL)3d91f8c7-8056-4faa-b23f-c6f53b1bb1e5 035 $a(OCoLC)1126197493 035 $a(oapen)doab59383 035 $a(EXLCZ)994920000000094759 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSiloxane-Based Polymers$fIgnazio Blanco 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (188 p.) 311 08$a9783038971252 311 08$a3038971251 330 $aThis book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications. 606 $aTechnology: general issues$2bicssc 610 $aceramizable silicone rubber 610 $ahalloysite 610 $aencapsulant 610 $adrug delivery 610 $afillers 610 $aultraviolet (UV) curable coatings 610 $aPDMS etching 610 $ananoparticles 610 $aroughness 610 $amethacryl POSS 610 $acomposite 610 $achlorogenic acid 610 $ahydrophilic 610 $asurface free energy 610 $atheranostics 610 $a29Si-NMR 610 $aborate 610 $adental resin 610 $amorphology 610 $asurface 610 $afabrication 610 $apolydimethylsiloxane 610 $arecessed electrode 610 $aswelling 610 $aMAPOSS 610 $aX-ray (Micro-CT) microtomography 610 $amechanical properties 610 $aplateau-shaped electrode 610 $ahybrid hydrogel 610 $ahardness 610 $asugar templating process 610 $abioactivity 610 $aamphiphilic 610 $ahigh molecular weight 610 $alow surface energy materials 610 $aPDMS 610 $aquartz microcrystal 610 $a3D porous network 610 $afluorinated siloxane resin 610 $amortar 610 $asurface modification 610 $apoly(dimethylsiloxanes) 610 $ascratch resistance 610 $amultielectrode array (MEA) 610 $anon-releasable 610 $asol-gel 610 $atopology of polysiloxane chains 610 $across-linking 610 $aFTIR 610 $adiethyl carbonate 610 $apoly(ethylene glycol) (PEG) 610 $aTG-FTIR 610 $aorganosilane 610 $aanti-bioadhesion 610 $acarbon content 610 $ananomedicine 610 $athermal stability 610 $ahybrids 610 $aunderexposure 610 $ananosilica 610 $ahyperbranched poly(methylhydrosiloxanes) 610 $aspinal cord signal recording 610 $aceramizable mechanism 610 $acoatings 610 $aTG 610 $asilicon 610 $apolysiloxanes 610 $abasalt fibre 610 $arefractive index 610 $adrug release 610 $athermal conductivity 610 $ahydrolytic polycondensation 610 $ashrinkage 610 $apolyhedral oligomeric silsesquioxanes 615 7$aTechnology: general issues 700 $aBlanco$b Ignazio$01301172 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346691003321 996 $aSiloxane-Based Polymers$93034307 997 $aUNINA