LEADER 01690nam 2200577Ia 450 001 9910789812103321 005 20230725030951.0 010 $a1-283-01225-1 010 $a9786613012258 010 $a1-907343-27-X 035 $a(CKB)2670000000079626 035 $a(OCoLC)707096187 035 $a(CaPaEBR)ebrary10451048 035 $a(SSID)ssj0000469447 035 $a(PQKBManifestationID)12194634 035 $a(PQKBTitleCode)TC0000469447 035 $a(PQKBWorkID)10511427 035 $a(PQKB)11316465 035 $a(MiAaPQ)EBC3007752 035 $a(Au-PeEL)EBL3007752 035 $a(CaPaEBR)ebr10451048 035 $a(CaONFJC)MIL301225 035 $a(OCoLC)923618875 035 $a(EXLCZ)992670000000079626 100 $a20100427d2011 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe future of post-human humor$b[electronic resource] $ea preface to a new theory of joking and laughing /$fPeter Baofu 210 $aCambridge, UK $cCambridge International Science Pub.$dc2011 215 $a1 online resource (465 p.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-907343-26-1 320 $aIncludes bibliographical references and index. 606 $aWit and humor 606 $aJoking 606 $aLaughter 615 0$aWit and humor. 615 0$aJoking. 615 0$aLaughter. 676 $a808.7 700 $aBaofu$b Peter$01468328 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910789812103321 996 $aThe future of post-human humor$93679455 997 $aUNINA LEADER 02841nam 22005173a 450 001 9910346675003321 005 20250203235425.0 010 $a9783038973416 010 $a3038973416 024 8 $a10.3390/books978-3-03897-341-6 035 $a(CKB)4920000000094917 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/55284 035 $a(ScCtBLL)fbb4cbe7-7a17-4a0f-b9ea-7e4b12acb1e5 035 $a(OCoLC)1163808625 035 $a(oapen)doab55284 035 $a(EXLCZ)994920000000094917 100 $a20250203i20192019 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aOperators of Fractional Calculus and Their Applications$fHari Mohan Srivastava 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 210 1$aBasel, Switzerland :$cMDPI,$d2019. 215 $a1 electronic resource (136 p.) 311 08$a9783038973409 311 08$a3038973408 330 $aDuring the past four decades or so, various operators of fractional calculus, such as those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober, Liouville-Caputo, and so on, have been found to be remarkably popular and important due mainly to their demonstrated applications in numerous diverse and widespread fields of the mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional calculus operators provide several potentially useful tools for solving differential, integral, differintegral, and integro-differential equations, together with the fractional-calculus analogues and extensions of each of these equations, and various other problems involving special functions of mathematical physics, as well as their extensions and generalizations in one and more variables. In this Special Issue, we invite and welcome review, expository, and original research articles dealing with the recent advances in the theory of fractional calculus and its multidisciplinary applications. 610 $aapplied mathematics 610 $afractional derivatives 610 $afractional derivatives associated with special functions of mathematical physics 610 $afractional integro-differential equations 610 $aoperators of fractional calculus 610 $aidentities and inequalities involving fractional integrals 610 $afractional differintegral equations 610 $achaos and fractional dynamics 610 $afractional differential 610 $afractional integrals 700 $aSrivastava$b Hari Mohan$01277894 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910346675003321 996 $aOperators of Fractional Calculus and Their Applications$94319011 997 $aUNINA